SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ohata Sho) "

Sökning: WFRF:(Ohata Sho)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adachi, Kouji, et al. (författare)
  • Composition and mixing state of individual aerosol particles from northeast Greenland and Svalbard in the Arctic during spring 2018
  • 2023
  • Ingår i: Atmospheric Environment. - 1352-2310 .- 1873-2844. ; 314
  • Tidskriftsartikel (refereegranskat)abstract
    • The Arctic region is warming about four times faster than the rest of the globe, and thus it is important to understand the processes driving climate change in this region. Aerosols are a significant component of the Arctic climate system as they form ice crystals and liquid droplets that control the dynamics of clouds and also directly interact with solar radiation, depending on the compositions and mixing states of individual particles. Here, we report on the characteristics of submicron-sized aerosol particles using transmission electron microscopy obtained at two high Arctic sites, northeast Greenland (Villum Research Station) and Svalbard (Zeppelin Observatory), during spring 2018. The results showed that a dominant compound in the submicron-sized spring aerosols was sulfate, followed by sea salt particles. Both model simulations and observations at the Zeppelin Observatory showed that sea salt particles became more prevalent when low-pressure systems passed by the station. Model simulations indicate that both sampling sites were affected by diffused and diluted long-range transport of anthropogenic aerosols from lower latitudes with negligible influences of biomass burning emissions during the observation period. Overall, the composition of measured aerosol particles from the two Arctic sites was generally similar and showed no apparent variation except for the sea salt fractions. This study shows a general picture of high Arctic aerosol particles influenced by marine sources and diffused long-range transport of anthropogenic sources during the Arctic spring period. These results will contribute to a better knowledge of the aerosol composition and mixing state during the Arctic spring, which helps to understand the contributions of aerosols to the Arctic climate.
  •  
2.
  • Ohata, Sho, et al. (författare)
  • Estimates of mass absorption cross sections of black carbon for filter-based absorption photometers in the Arctic
  • 2021
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 14:10, s. 6723-6748
  • Tidskriftsartikel (refereegranskat)abstract
    • Long-term measurements of atmospheric mass concentrations of black carbon (BC) are needed to investigate changes in its emission, transport, and deposition. However, depending on instrumentation, parameters related to BC such as aerosol absorption coefficient (babs) have been measured instead. Most ground-based measurements of babs in the Arctic have been made by filter-based absorption photometers, including particle soot absorption photometers (PSAPs), continuous light absorption photometers (CLAPs), Aethalometers, and multi-angle absorption photometers (MAAPs). The measured babs can be converted to mass concentrations of BC (MBC) by assuming the value of the mass absorption cross section (MAC; MBC= babs/ MAC). However, the accuracy of conversion of babs to MBC has not been adequately assessed. Here, we introduce a systematic method for deriving MAC values from babs measured by these instruments and independently measured MBC. In this method, MBC was measured with a filter-based absorption photometer with a heated inlet (COSMOS). COSMOS-derived MBC (MBC (COSMOS)) is traceable to a rigorously calibrated single particle soot photometer (SP2), and the absolute accuracy of MBC (COSMOS) has been demonstrated previously to be about 15 % in Asia and the Arctic. The necessary conditions for application of this method are a high correlation of the measured babs with independently measured MBC and long-term stability of the regression slope, which is denoted as MACcor (MAC derived from the correlation). In general, babs–MBC (COSMOS) correlations were high (r2= 0.76–0.95 for hourly data) at Alert in Canada, Ny-Ålesund in Svalbard, Barrow (NOAA Barrow Observatory) in Alaska, Pallastunturi in Finland, and Fukue in Japan and stable for up to 10 years. We successfully estimated MACcor values (10.8–15.1 m2 g−1 at a wavelength of 550 nm for hourly data) for these instruments, and these MACcor values can be used to obtain error-constrained estimates of MBC from babs measured at these sites even in the past, when COSMOS measurements were not made. Because the absolute values of MBC at these Arctic sites estimated by this method are consistent with each other, they are applicable to the study of spatial and temporal variation in MBC in the Arctic and to evaluation of the performance of numerical model calculations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy