SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ohlmann S. T.) "

Sökning: WFRF:(Ohlmann S. T.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kirsebom, O. S., et al. (författare)
  • Discovery of an Exceptionally Strong β -Decay Transition of F 20 and Implications for the Fate of Intermediate-Mass Stars
  • 2019
  • Ingår i: Physical Review Letters. - 0031-9007. ; 123:26
  • Tidskriftsartikel (refereegranskat)abstract
    • A significant fraction of stars between 7 and 11 solar masses are thought to become supernovae, but the explosion mechanism is unclear. The answer depends critically on the rate of electron capture on Ne20 in the degenerate oxygen-neon stellar core. However, because of the unknown strength of the transition between the ground states of Ne20 and F20, it has not previously been possible to fully constrain the rate. By measuring the transition, we establish that its strength is exceptionally large and that it enhances the capture rate by several orders of magnitude. This has a decisive impact on the evolution of the core, increasing the likelihood that the star is (partially) disrupted by a thermonuclear explosion rather than collapsing to form a neutron star. Importantly, our measurement resolves the last remaining nuclear physics uncertainty in the final evolution of degenerate oxygen-neon stellar cores, allowing future studies to address the critical role of convection, which at present is poorly understood
  •  
2.
  • Kromer, Markus, et al. (författare)
  • Deflagrations in hybrid CONe white dwarfs : a route to explain the faint Type Iax supernova 2008ha
  • 2015
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 450:3, s. 3045-3053
  • Tidskriftsartikel (refereegranskat)abstract
    • Stellar evolution models predict the existence of hybrid white dwarfs (WDs) with a carbon-oxygen core surrounded by an oxygen-neon mantle. Being born with masses similar to 1.1 M-aS (TM), hybrid WDs in a binary system may easily approach the Chandrasekhar mass (M-Ch) by accretion and give rise to a thermonuclear explosion. Here, we investigate an off-centre deflagration in a near-M-Ch hybrid WD under the assumption that nuclear burning only occurs in carbon-rich material. Performing hydrodynamics simulations of the explosion and detailed nucleosynthesis post-processing calculations, we find that only 0.014 M-aS (TM) of material is ejected while the remainder of the mass stays bound. The ejecta consist predominantly of iron-group elements, O, C, Si and S. We also calculate synthetic observables for our model and find reasonable agreement with the faint Type Iax SN 2008ha. This shows for the first time that deflagrations in near-M-Ch WDs can in principle explain the observed diversity of Type Iax supernovae. Leaving behind a near-M-Ch bound remnant opens the possibility for recurrent explosions or a subsequent accretion-induced collapse in faint Type Iax SNe, if further accretion episodes occur. From binary population synthesis calculations, we find the rate of hybrid WDs approaching M-Ch to be of the order of 1 per cent of the Galactic SN Ia rate.
  •  
3.
  • Marquardt, Kai S., et al. (författare)
  • Type Ia supernovae from exploding oxygen-neon white dwarfs
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 580
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: The progenitor problem of Type Ia supernovae (SNe Ia) is still unsolved. Most of these events are thought to be explosions of carbon-oxygen (CO) white dwarfs (WDs), but for many of the explosion scenarios, particularly those involving the externally triggered detonation of a sub-Chandrasekhar mass WD (sub-M-Ch, WD), there is also a possibility of having an oxygen-neon (ONe) WD as progenitor.Aims: We simulate detonations of ONe WDs and calculate synthetic observables from these models. The results are compared with detonations in CO WDs of similar mass and observational data of SNe Ia.Methods: We perform hydrodynamic explosion simulations of detonations in initially hydrostatic ONe WDs for a range of masses below the Chandrasekhar mass (M-Ch), followed by detailed nucleosynthetic postprocessing with a 384-isotope nuclear reaction network. The results are used to calculate synthetic spectra and light curves, which are then compared with observations of SNe Ia. We also perform binary evolution calculations to determine the number of SNe Ia involving ONe WDs relative to the number of other promising progenitor channels.Results: The ejecta structures of our simulated detonations in sub-M-Ch, ONe WDs are similar to those from CO WDs. There are, however, small systematic deviations in the mass fractions and the ejecta velocities. These lead to spectral features that are systematically less blueshifted. Nevertheless, the synthetic observables of our ONe WD explosions are similar to those obtained from CO models.Conclusions: Our binary evolution calculations show that a significant fraction (3-10%) of potential progenitor systems should contain an ONe WD. The comparison of our ONe models with our CO models of comparable mass (similar to 1.2 M-circle dot) shows that the less blueshifted spectral features fit the observations better, although they are too bright for normal SNe Ia.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy