SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ohta Takeshi) "

Sökning: WFRF:(Ohta Takeshi)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ichii, Kazuhito, et al. (författare)
  • New data-driven estimation of terrestrial CO2 fluxes in Asia using a standardized database of eddy covariance measurements, remote sensing data, and support vector regression
  • 2017
  • Ingår i: Journal of Geophysical Research - Biogeosciences. - 2169-8953. ; 122:4, s. 767-795
  • Tidskriftsartikel (refereegranskat)abstract
    • The lack of a standardized database of eddy covariance observations has been an obstacle for data-driven estimation of terrestrial CO2 fluxes in Asia. In this study, we developed such a standardized database using 54 sites from various databases by applying consistent postprocessing for data-driven estimation of gross primary productivity (GPP) and net ecosystem CO2 exchange (NEE). Data-driven estimation was conducted by using a machine learning algorithm: support vector regression (SVR), with remote sensing data for 2000 to 2015 period. Site-level evaluation of the estimated CO2 fluxes shows that although performance varies in different vegetation and climate classifications, GPP and NEE at 8days are reproduced (e.g., r2=0.73 and 0.42 for 8day GPP and NEE). Evaluation of spatially estimated GPP with Global Ozone Monitoring Experiment 2 sensor-based Sun-induced chlorophyll fluorescence shows that monthly GPP variations at subcontinental scale were reproduced by SVR (r2=1.00, 0.94, 0.91, and 0.89 for Siberia, East Asia, South Asia, and Southeast Asia, respectively). Evaluation of spatially estimated NEE with net atmosphere-land CO2 fluxes of Greenhouse Gases Observing Satellite (GOSAT) Level 4A product shows that monthly variations of these data were consistent in Siberia and East Asia; meanwhile, inconsistency was found in South Asia and Southeast Asia. Furthermore, differences in the land CO2 fluxes from SVR-NEE and GOSAT Level 4A were partially explained by accounting for the differences in the definition of land CO2 fluxes. These data-driven estimates can provide a new opportunity to assess CO2 fluxes in Asia and evaluate and constrain terrestrial ecosystem models.
  •  
2.
  • Kasurinen, Ville, et al. (författare)
  • Latent heat exchange in the boreal and arctic biomes
  • 2014
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 20:11, s. 3439-3456
  • Forskningsöversikt (refereegranskat)abstract
    • In this study latent heat flux (E) measurements made at 65 boreal and arctic eddy-covariance (EC) sites were analyses by using the Penman-Monteith equation. Sites were stratified into nine different ecosystem types: harvested and burnt forest areas, pine forests, spruce or fir forests, Douglas-fir forests, broadleaf deciduous forests, larch forests, wetlands, tundra and natural grasslands. The Penman-Monteith equation was calibrated with variable surface resistances against half-hourly eddy-covariance data and clear differences between ecosystem types were observed. Based on the modeled behavior of surface and aerodynamic resistances, surface resistance tightly control E in most mature forests, while it had less importance in ecosystems having shorter vegetation like young or recently harvested forests, grasslands, wetlands and tundra. The parameters of the Penman-Monteith equation were clearly different for winter and summer conditions, indicating that phenological effects on surface resistance are important. We also compared the simulated E of different ecosystem types under meteorological conditions at one site. Values of E varied between 15% and 38% of the net radiation in the simulations with mean ecosystem parameters. In general, the simulations suggest that E is higher from forested ecosystems than from grasslands, wetlands or tundra-type ecosystems. Forests showed usually a tighter stomatal control of E as indicated by a pronounced sensitivity of surface resistance to atmospheric vapor pressure deficit. Nevertheless, the surface resistance of forests was lower than for open vegetation types including wetlands. Tundra and wetlands had higher surface resistances, which were less sensitive to vapor pressure deficits. The results indicate that the variation in surface resistance within and between different vegetation types might play a significant role in energy exchange between terrestrial ecosystems and atmosphere. These results suggest the need to take into account vegetation type and phenology in energy exchange modeling.
  •  
3.
  • Morokuma, Tomoki, et al. (författare)
  • OISTER optical and near-infrared monitoring observations of peculiar radio-loud active galactic nucleus SDSSJ110006.07+442144.3
  • 2017
  • Ingår i: Nippon Tenmon Gakkai obun kenkyu hokoku. - : Oxford University Press (OUP). - 0004-6264. ; 69:5
  • Tidskriftsartikel (refereegranskat)abstract
    • We present monitoring campaign observations at optical and near-infrared (NIR) wavelengths for a radio-loud active galactic nucleus (AGN) at z = 0.840, SDSSJ110006.07+442144.3 (hereafter, J1100+4421), which was identified during a flare phase in late 2014 February. The campaigns consist of three intensive observing runs from the discovery to 2015 March, mostly within the scheme of the OISTER collaboration. Optical-NIR light curves and simultaneous spectral energy distributions (SEDs) are obtained. Our measurements show the strongest brightening in 2015 March. We found that the optical-NIR SEDs of J1100+4421 show an almost steady shape despite the large and rapid intranight variability. This constant SED shape is confirmed to extend to similar to 5 mu m in the observed frame using the archival WISE data. Given the lack of absorption lines and the steep power-law spectrum of alpha(upsilon) similar to -1.4, where f(v) proportional to v(alpha upsilon), synchrotron radiation by a relativistic jet with no or small contributions from the host galaxy and the accretion disk seemsmost plausible as an optical-NIR emission mechanism. The steep optical-NIR spectral shape and the large amplitude of variability are consistent with this object being a low.peak jet-dominated AGN. In addition, sub-arcsecond resolution optical imaging data taken with Subaru Hyper Suprime-Cam does not show a clear extended component and the spatial scales are significantly smaller than the large extensions detected at radio wavelengths. The optical spectrum of a possible faint companion galaxy does not show any emission lines at the same redshift, and hence a merging hypothesis for this AGN-related activity is not supported by our observations.
  •  
4.
  • Yuan, Wenping, et al. (författare)
  • Differentiating moss from higher plants is critical in studying the carbon cycle of the boreal biome.
  • 2014
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • The satellite-derived normalized difference vegetation index (NDVI), which is used for estimating gross primary production (GPP), often includes contributions from both mosses and vascular plants in boreal ecosystems. For the same NDVI, moss can generate only about one-third of the GPP that vascular plants can because of its much lower photosynthetic capacity. Here, based on eddy covariance measurements, we show that the difference in photosynthetic capacity between these two plant functional types has never been explicitly included when estimating regional GPP in the boreal region, resulting in a substantial overestimation. The magnitude of this overestimation could have important implications regarding a change from a current carbon sink to a carbon source in the boreal region. Moss abundance, associated with ecosystem disturbances, needs to be mapped and incorporated into GPP estimates in order to adequately assess the role of the boreal region in the global carbon cycle.
  •  
5.
  • Zhou, Huimin, et al. (författare)
  • Relative importance of climatic variables, soil properties and plant traits to spatial variability in net CO2 exchange across global forests and grasslands
  • 2021
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier BV. - 0168-1923. ; 307
  • Tidskriftsartikel (refereegranskat)abstract
    • Compared to the well-known drivers of spatial variability in gross primary productivity (GPP), the relative importance of climatic variables, soil properties and plant traits to the spatial variability in net ecosystem exchange of CO2 between terrestrial ecosystem and atmosphere (NEE) is poorly understood. We used principal component regression to analyze data from 147 eddy flux sites to disentangle effects of climatic variables, soil properties and plant traits on the spatial variation in annual NEE and its components (GPP and ecosystem respiration (RE)) across global forests and grasslands. Our results showed that the largest unique contribution (proportion of variance only explained by one class of variables) to NEE variance came from climatic variables for forests (24%-30%) and soil properties for grasslands (41%-54%). Specifically, mean annual precipitation and potential evapotranspiration were the most important climatic variables driving forest NEE, whereas available soil water capacity, clay content and cation exchange capacity mainly influenced grassland NEE. Plant traits showed a small unique contribution to NEE in both forests and grasslands. However, leaf phosphorus content strongly interacted with soil total nitrogen density and clay content, and these combined factors represented a major contribution for grassland NEE. For GPP and RE, the majority of spatial variance was attributed to the common contribution of climate, soil and plant traits (50% - 62%, proportion of variance explained by more than one class of variables), rather than their unique contributions. Interestingly, those factors with only minor influences on GPP and RE variability (e.g., soil properties) have significant contributions to the spatial variability in NEE. Such emerging factors and the interactions between climatic variables, soil properties and plant traits are not well represented in current terrestrial biosphere models, which should be considered in future model improvement to accurately predict the spatial pattern of carbon cycling across forests and grasslands globally.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy