SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Okrugin A. V.) "

Sökning: WFRF:(Okrugin A. V.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ernst, R. E., et al. (författare)
  • Long-lived connection between southern Siberia and northern Laurentia in the Proterozoic
  • 2016
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 9:6, s. 464-469
  • Tidskriftsartikel (refereegranskat)abstract
    • Precambrian supercontinents Nuna-Columbia (1.7 to 1.3 billion years ago) and Rodinia (1.1 to 0.7 billion years ago) have been proposed. However, the arrangements of crustal blocks within these supercontinents are poorly known. Huge, dominantly basaltic magmatic outpourings and intrusions, covering up to millions of square kilometres, termed Large Igneous Provinces, typically accompany (super) continent breakup, or attempted breakup and offer an important tool for reconstructing supercontinents. Here we focus on the Large Igneous Province record for Siberia and Laurentia, whose relative position in Nuna-Columbia and Rodinia reconstructions is highly controversial. We present precise geochronology - nine U-Pb and six Ar-Ar ages - on dolerite dykes and sills, along with existing dates from the literature, that constrain the timing of emplacement of Large Igneous Province magmatism in southern Siberia and northern Laurentia between 1,900 and 720 million years ago. We identify four robust age matches between the continents 1,870, 1,750, 1,350 and 720 million years ago, as well as several additional approximate age correlations that indicate southern Siberia and northern Laurentia were probably near neighbours for this 1.2-billion-year interval. Our reconstructions provide a framework for evaluating the shared geological, tectonic and metallogenic histories of these continental blocks.
  •  
2.
  • Gladkochub, D. P., et al. (författare)
  • 1.79–1.75 Ga mafic magmatism of the Siberian craton and late Paleoproterozoic paleogeography
  • 2022
  • Ingår i: Precambrian Research. - : Elsevier BV. - 0301-9268. ; 370
  • Tidskriftsartikel (refereegranskat)abstract
    • The paper presents new geological, geochronological, geochemical, and Nd isotopic data on the late Paleoproterozoic dolerites of the Siberian craton. U-Pb baddeleyite ages of the Doros dolerites (Aldan shield, south-eastern Siberia) and East Anabar dolerites (Anabar shield, northern Siberia) are 1757 ± 4 and 1774 ± 6 Ma, respectively. This new geochronological data together with published 1.76–1.75 Ga ages for Timpton-Algamay dolerites of the Aldan shield and Chaya dolerites of the Baikal uplift (southern Siberia) revealed a 20 my difference between this magmatism in the north and south Siberia. The Doros dolerites in their chemical compositions correspond to sub-alkaline basaltic andesites, but the East Anabar dolerite is chemically close to basaltic trachyandesite. The Doros dolerites demonstrate negative and close to zero ɛNd(t) values (from −7.0 to +0.1), which correlate well with SiO2 and Mg#. All Doros dolerites have Nb–Ta and Ti anomalies in multielement spectra. The geochemical and Nd isotopic data suggest that the Doros dolerites have been formed by the mixing of mantle and crustal material. The East Anabar dolerites are characterized by a negative ɛNd(t) value of −3.7, negative Nb–Ta anomaly in multielement spectra, high concentrations of TiO2 and P2O5. The 1775 Ma East Anabar dolerites could be generated from a subcontinental lithospheric mantle source, possibly with some mantle plume interaction (possibly centred at the convergence with the 1.76–1.75 Ga fanning Aldan swarm). Geochemistry and Nd isotope systematics of all 1.78–1.75 Ga mafic dykes and intrusions of the Siberian craton indicate the subcontinental lithospheric mantle source or mantle source contaminated by crustal material. Geochronological data from the 1.79–1.75 Ga magmatic rocks of Siberia and other continents suggest continuous magmatism over this interval in some continents, but a series of short magmatic events/pulses (from one to four) separated by intervals of quiescence in other continents. We locate the analysed dykes and sills on new 1750 Ma and 1790 Ma global paleogeographic reconstructions. Analysis of 1.79–1.75 Ga geochemical data on mafic intrusions from Late Paleoproterozoic continents suggests the prevalence of subcontinental lithospheric mantle source for the mafic intrusions over the pure mantle plume source.
  •  
3.
  • Ernst, R. E., et al. (författare)
  • The 1501 Ma Kuonamka Large Igneous Province of northern Siberia : U-Pb geochronology, geochemistry, and links with coeval magmatism on other crustal blocks
  • 2016
  • Ingår i: Russian Geology and Geophysics. - : GeoScienceWorld. - 1068-7971. ; 57:5, s. 653-671
  • Tidskriftsartikel (refereegranskat)abstract
    • A new large igneous province (LIP), the 1501 ± 3 Ma Kuonamka LIP, extends across 700 km of northern Siberia and is linked with coeval dikes and sills in the formerly attached Sao Francisco craton (SFC)-Congo craton to yield a short-duration event 2000 km across. The age of the Kuonamka LIP can be summarized as 1501 ± 3 Ma (95% confidence), based on 7 U-Pb ID-TIMS ages (6 new herein) from dolerite dikes and sills across the Anabar shield and within western Riphean cover rocks for a distance of 270 km. An additional sill yielded a SIMS (CAMECA) age of 1483 ± 17 Ma and sill in the Olenek uplift several hundred kilometers farther east, a previous SIMS (SHRIMP) age of ca. 1473 Ma was obtained on a sill; both SIMS ages are within the age uncertainty of the ID-TIMS ages. Geochemical data indicate a tholeiitic basalt composition with low MgO (4-7 wt%) within-plate character based on trace element classification diagrams and source between E-MORB and OIB with only minor contamination from crust or metasomatized lithospheric mantle. Two subgroups are distinguished: Group 1 has gently sloping LREE ((La/Sm)PM = 1.9) and HREE ((Gd/Yb)PM = 1.8) patterns, slightly negative Sr and moderate TiO2 (2.2 wt%), and Group 2 has steeper LREE ((La/Sm)PM = 2.3) and HREE ((Gd/Yb)PM = 2.3), strong negative Sr anomaly, is higher in TiO2 (2.7 wt%), and is transitional from tholeiitic to weakly alkaline in composition. The slight differences in REE slopes are consistent with Group 2 on average melting at deeper levels. Proposed reconstructions of the Kuonamka LIP with 1500 Ma magmatism of the SFC-Congo craton are supported by a geochemical comparison. Specifically, the chemistry of the Chapada Diamantina and Curaga dikes of the SFC can be linked to that of Groups 1 and 2, respectively, of the Kuonamka LIP and are consistent with a common mantle source between EMORB and OIB and subsequent differentiation history. However, the coeval Humpata sills and dikes of the Angola block of the Congo craton represent a different magma batch.
  •  
4.
  • Tomshin, M. D., et al. (författare)
  • KENGEDE MAFIC DYKE SWARM AND EXPANSION OF THE 1.50 Ga KUONAMKA LARGE IGNEOUS PROVINCE OF NORTHERN SIBERIA
  • 2023
  • Ingår i: Geodynamics and Tectonophysics. - 2078-502X. ; 14:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Within the Anabar shield in the northern part of the Siberia, Late Precambrian mafic igneous units are widespread, which form dyke swarms of different ages of different trends. This paper presents new data on the composition, structure and U-Pb dating of the E-W trending Kengede dyke swarm. Three new U-Pb ID-TIMS baddeleyite ages (1496±7, 1494±3 and 1494±5 Ma) were obtained from three dykes, indicating that the Kengede swarm is part of the 1500 Ma Kuonamka large igneous province (LIP). The previously recognized Kuonamka Large Igneous Province (LIP) extends for 700 km from the Anabar shield to the Olenek uplift in the northern part of the Siberia and is potentially linked to coeval dykes and sills of the São Francisco craton and the Congo craton. The newly dated Kengede swarm is parallel to but offset by 50 km from the previously dated 1501±3 Ma Kuonamka swarm, and the identification of these two subparallel dyke subswarms of the Kuonamka LIP supports the earlier interpretation that mantle plume centre was located along the extrapolated trend of the dykes near the eastern or western margin of the Siberia. The paper examines features of sulfide Cu-Ni mineralization in dolerites of the Kengede and East Anabar dyke swarms and discusses potential Cu-Ni-sulfide mineralization linked to the Precambrian mafic dyke swarms of different ages in the north-east of the Siberia.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy