SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Olbrich M.) "

Sökning: WFRF:(Olbrich M.)

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • de Graauw, Th., et al. (författare)
  • The Herschel-Heterodyne Instrument for the Far-Infrared (HIFI)
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518, s. L6-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: This paper describes the Heterodyne Instrument for the Far-Infrared (HIFI) that was launched onboard ESA's Herschel Space Observatory in May 2009. Methods: The instrument is a set of 7 heterodyne receivers that are electronically tuneable, covering 480-1250 GHz with SIS mixers and the 1410-1910 GHz range with hot electron bolometer (HEB) mixers. The local oscillator (LO) subsystem comprises a Ka-band synthesizer followed by 14 chains of frequency multipliers and 2 chains for each frequency band. A pair of auto-correlators and a pair of acousto-optical spectrometers process the two IF signals from the dual-polarization, single-pixel front-ends to provide instantaneous frequency coverage of 2 × 4 GHz, with a set of resolutions (125 kHz to 1 MHz) that are better than 0.1 km s-1. Results: After a successful qualification and a pre-launch TB/TV test program, the flight instrument is now in-orbit and completed successfully the commissioning and performance verification phase. The in-orbit performance of the receivers matches the pre-launch sensitivities. We also report on the in-orbit performance of the receivers and some first results of HIFI's operations. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
  •  
2.
  • Oikonomou, Vasileios, et al. (författare)
  • The Role of Interferon-γ in Autoimmune Polyendocrine Syndrome Type 1.
  • 2024
  • Ingår i: The New England journal of medicine. - 1533-4406. ; 390:20, s. 1873-1884
  • Tidskriftsartikel (refereegranskat)abstract
    • Autoimmune polyendocrine syndrome type 1 (APS-1) is a life-threatening, autosomal recessive syndrome caused by autoimmune regulator (AIRE) deficiency. In APS-1, self-reactive T cells escape thymic negative selection, infiltrate organs, and drive autoimmune injury. The effector mechanisms governing T-cell-mediated damage in APS-1 remain poorly understood.We examined whether APS-1 could be classified as a disease mediated by interferon-γ. We first assessed patients with APS-1 who were participating in a prospective natural history study and evaluated mRNA and protein expression in blood and tissues. We then examined the pathogenic role of interferon-γ using Aire-/-Ifng-/- mice and Aire-/- mice treated with the Janus kinase (JAK) inhibitor ruxolitinib. On the basis of our findings, we used ruxolitinib to treat five patients with APS-1 and assessed clinical, immunologic, histologic, transcriptional, and autoantibody responses.Patients with APS-1 had enhanced interferon-γ responses in blood and in all examined autoimmunity-affected tissues. Aire-/- mice had selectively increased interferon-γ production by T cells and enhanced interferon-γ, phosphorylated signal transducer and activator of transcription 1 (pSTAT1), and CXCL9 signals in multiple organs. Ifng ablation or ruxolitinib-induced JAK-STAT blockade in Aire-/- mice normalized interferon-γ responses and averted T-cell infiltration and damage in organs. Ruxolitinib treatment of five patients with APS-1 led to decreased levels of T-cell-derived interferon-γ, normalized interferon-γ and CXCL9 levels, and remission of alopecia, oral candidiasis, nail dystrophy, gastritis, enteritis, arthritis, Sjögren's-like syndrome, urticaria, and thyroiditis. No serious adverse effects from ruxolitinib were identified in these patients.Our findings indicate that APS-1, which is caused by AIRE deficiency, is characterized by excessive, multiorgan interferon-γ-mediated responses. JAK inhibition with ruxolitinib in five patients showed promising results. (Funded by the National Institute of Allergy and Infectious Diseases and others.).
  •  
3.
  • Karch, J., et al. (författare)
  • Terahertz Radiation Driven Chiral Edge Currents in Graphene
  • 2011
  • Ingår i: Physical Review Letters. - : American Physical Society. - 1079-7114 .- 0031-9007. ; 107:27
  • Tidskriftsartikel (refereegranskat)abstract
    • We observe photocurrents induced in single-layer graphene samples by illumination of the graphene edges with circularly polarized terahertz radiation at normal incidence. The photocurrent flows along the sample edges and forms a vortex. Its winding direction reverses by switching the light helicity from left to right handed. We demonstrate that the photocurrent stems from the sample edges, which reduce the spatial symmetry and result in an asymmetric scattering of carriers driven by the radiation electric field. The developed theory based on Boltzmann's kinetic equation is in a good agreement with the experiment. We show that the edge photocurrents can be applied for determination of the conductivity type and the momentum scattering time of the charge carriers in the graphene edge vicinity.
  •  
4.
  • Drexler, C, et al. (författare)
  • Magnetic quantum ratchet effect in graphene
  • 2013
  • Ingår i: Nature Nanotechnology. - : Nature Publishing Group. - 1748-3387 .- 1748-3395. ; 8:2, s. 104-107
  • Tidskriftsartikel (refereegranskat)abstract
    • A periodically driven system with spatial asymmetry can exhibit a directed motion facilitated by thermal or quantum fluctuations(1). This so-called ratchet effect(2) has fascinating ramifications in engineering and natural sciences(3-18). Graphene(19) is nominally a symmetric system. Driven by a periodic electric field, no directed electric current should flow. However, if the graphene has lost its spatial symmetry due to its substrate or adatoms, an electronic ratchet motion can arise. We report an experimental demonstration of such an electronic ratchet in graphene layers, proving the underlying spatial asymmetry. The orbital asymmetry of the Dirac fermions is induced by an in-plane magnetic field, whereas the periodic driving comes from terahertz radiation. The resulting magnetic quantum ratchet transforms the a.c. power into a d.c. current, extracting work from the out-of-equilibrium electrons driven by undirected periodic forces. The observation of ratchet transport in this purest possible two-dimensional system indicates that the orbital effects may appear and be substantial in other two-dimensional crystals such as boron nitride, molybdenum dichalcogenides and related heterostructures. The measurable orbital effects in the presence of an in-plane magnetic field provide strong evidence for the existence of structure inversion asymmetry in graphene.
  •  
5.
  • Drexler, C., et al. (författare)
  • Magnetic quantum ratchet effect in graphene
  • 2013
  • Ingår i: Nature Nanotechnology. - 1748-3387 .- 1748-3395. ; 8:2, s. 104-107
  • Tidskriftsartikel (refereegranskat)abstract
    • A periodically driven system with spatial asymmetry can exhibit a directed motion facilitated by thermal or quantum fluctuations(1). This so-called ratchet effect(2) has fascinating ramifications in engineering and natural sciences(3-18). Graphene(19) is nominally a symmetric system. Driven by a periodic electric field, no directed electric current should flow. However, if the graphene has lost its spatial symmetry due to its substrate or adatoms, an electronic ratchet motion can arise. We report an experimental demonstration of such an electronic ratchet in graphene layers, proving the underlying spatial asymmetry. The orbital asymmetry of the Dirac fermions is induced by an in-plane magnetic field, whereas the periodic driving comes from terahertz radiation. The resulting magnetic quantum ratchet transforms the a.c. power into a d.c. current, extracting work from the out-of-equilibrium electrons driven by undirected periodic forces. The observation of ratchet transport in this purest possible two-dimensional system indicates that the orbital effects may appear and be substantial in other two-dimensional crystals such as boron nitride, molybdenum dichalcogenides and related heterostructures. The measurable orbital effects in the presence of an in-plane magnetic field provide strong evidence for the existence of structure inversion asymmetry in graphene.
  •  
6.
  • Drexler, C., et al. (författare)
  • Terahertz radiation induced edge currents in graphene
  • 2011
  • Ingår i: RMMW-THz 2011 - 36th International Conference on Infrared, Millimeter, and Terahertz Waves. - 9781457705090
  • Konferensbidrag (refereegranskat)abstract
    • We report on the observation of the terahertz radiation induced edge photogalvanic effect. The directed net electric current is generated in single layer graphene by the irradiation of the samples' edges with linearly or circularly polarized terahertz laser radiation at normal incidence. We show that the directed net electric current stems from the sample edges, which reduce locally the symmetry and result in an asymmetric scattering of carriers driven by the radiation field.
  •  
7.
  •  
8.
  • Ganichev, S.D., et al. (författare)
  • Magnetic quantum ratchet effect in graphene
  • 2013
  • Ingår i: International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz. - 2162-2027 .- 2162-2035. - 9781467347174
  • Konferensbidrag (refereegranskat)abstract
    • We report on the observation of magnetic quantum ratchet (MQR) effect induced by electric field of terahertz radiation in single-layer graphene samples subjected to an inplane magnetic field. We show that the dc electric current stems from the orbital asymmetry of the Dirac fermions induced by an in-plane magnetic field, while the periodic driving comes from terahertz radiation. A microscopic theory of the observed effect is developed being in a good qualitative agreement with the experiment. The observation of the ratchet transport in the purest possible two-dimensional system indicates that the orbital effects may appear and be substantial in other 2D crystals, such as boron nitride, molybdenum dichalcogenides, and related heterostructures. The measurable orbital effects in the presence of an in-plane magnetic field give strong evidence for the existence of structure inversion asymmetry in graphene.
  •  
9.
  • Karch, J., et al. (författare)
  • Dynamic Hall Effect Driven by Circularly Polarized Light in a Graphene Layer
  • 2010
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 105:22, s. 227402-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the observation of the circular ac Hall effect where the current is solely driven by the crossed ac electric and magnetic fields of circularly polarized radiation. Illuminating an unbiased monolayer sheet of graphene with circularly polarized terahertz radiation at room temperature generates-under oblique incidence-an electric current perpendicular to the plane of incidence, whose sign is reversed by switching the radiation helicity. Alike the classical dc Hall effect, the voltage is caused by crossed E and B fields which are, however rotating with the lights frequency.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy