SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Olivier Adriaan) "

Sökning: WFRF:(Olivier Adriaan)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • Alexander, Stephen P. H., et al. (författare)
  • The Concise Guide to PHARMACOLOGY 2023/24: G protein-coupled receptors
  • 2023
  • Ingår i: BRITISH JOURNAL OF PHARMACOLOGY. - : British pharmacological society. - 0007-1188 .- 1476-5381. ; 180
  • Tidskriftsartikel (refereegranskat)abstract
    • The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and about 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at . G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.
  •  
3.
  • Christopoulos, Arthur, et al. (författare)
  • THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G protein-coupled receptors.
  • 2021
  • Ingår i: British journal of pharmacology. - : Wiley. - 1476-5381 .- 0007-1188. ; 178 Suppl 1
  • Forskningsöversikt (refereegranskat)abstract
    • The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15538. G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.
  •  
4.
  • Lawrenson, Kate, et al. (författare)
  • Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus
  • 2016
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10-20), ER-negative BC (P=1.1 × 10-13), BRCA1-associated BC (P=7.7 × 10-16) and triple negative BC (P-diff=2 × 10-5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10-3) and ABHD8 (P<2 × 10-3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3′-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk.
  •  
5.
  •  
6.
  • Videvall, Elin, et al. (författare)
  • Early-life gut dysbiosis linked to juvenile mortality in ostriches
  • 2020
  • Ingår i: Microbiome. - : Springer Science and Business Media LLC. - 2049-2618. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Imbalances in the gut microbial community (dysbiosis) of vertebrates have been associated with several gastrointestinal and autoimmune diseases. However, it is unclear which taxa are associated with gut dysbiosis, and if particular gut regions or specific time periods during ontogeny are more susceptible. We also know very little of this process in non-model organisms, despite an increasing realization of the general importance of gut microbiota for health. Methods: Here, we examine the changes that occur in the microbiome during dysbiosis in different parts of the gastrointestinal tract in a long-lived bird with high juvenile mortality, the ostrich (Struthio camelus). We evaluated the 16S rRNA gene composition of the ileum, cecum, and colon of 68 individuals that died of suspected enterocolitis during the first 3 months of life (diseased individuals), and of 50 healthy individuals that were euthanized as age-matched controls. We combined these data with longitudinal environmental and fecal sampling to identify potential sources of pathogenic bacteria and to unravel at which stage of development dysbiosis-associated bacteria emerge. Results: Diseased individuals had drastically lower microbial alpha diversity and differed substantially in their microbial beta diversity from control individuals in all three regions of the gastrointestinal tract. The clear relationship between low diversity and disease was consistent across all ages in the ileum, but decreased with age in the cecum and colon. Several taxa were associated with mortality (Enterobacteriaceae, Peptostreptococcaceae, Porphyromonadaceae, Clostridium), while others were associated with health (Lachnospiraceae, Ruminococcaceae, Erysipelotrichaceae, Turicibacter, Roseburia). Environmental samples showed no evidence of dysbiosis-associated bacteria being present in either the food, water, or soil substrate. Instead, the repeated fecal sampling showed that pathobionts were already present shortly after hatching and proliferated in individuals with low microbial diversity, resulting in high mortality several weeks later. Conclusions: Identifying the origins of pathobionts in neonates and the factors that subsequently influence the establishment of diverse gut microbiota may be key to understanding dysbiosis and host development. [MediaObject not available: See fulltext.]
  •  
7.
  • Videvall, Elin, et al. (författare)
  • Major shifts in gut microbiota during development and its relationship to growth in ostriches
  • 2019
  • Ingår i: Molecular Ecology. - : Wiley. - 0962-1083 .- 1365-294X. ; 28:10, s. 2653-2667
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of gut microbiota during ontogeny is emerging as an important process influencing physiology, immunity and fitness in vertebrates. However, knowledge of how bacteria colonize the juvenile gut, how this is influenced by changes in the diversity of gut bacteria and to what extent this influences host fitness, particularly in nonmodel organisms, is lacking. Here we used 16S rRNA gene sequencing to describe the successional development of the faecal microbiome in ostriches (Struthio camelus, n = 66, repeatedly sampled) over the first 3 months of life and its relationship to growth. We found a gradual increase in microbial diversity with age that involved multiple colonization and extinction events and a major taxonomic shift in bacteria that coincided with the cessation of yolk absorption. Comparisons with the microbiota of adults (n = 5) revealed that the chicks became more similar in their microbial diversity and composition to adults as they aged. There was a five-fold difference in juvenile growth during development, and growth during the first week of age was strongly positively correlated with the abundance of the genus Bacteroides and negatively correlated with Akkermansia. After the first week, the abundances of six phylogenetically diverse families (Peptococcaceae, S24-7, Verrucomicrobiae, Anaeroplasmataceae, Streptococcaceae, Methanobacteriaceae) were associated with subsequent reductions in chick growth in an age-specific and transient manner. These results have broad implications for our understanding of the development of gut microbiota and its associations with animal growth.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7
Typ av publikation
tidskriftsartikel (5)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (7)
Författare/redaktör
Schulz, Stefan (2)
Kukkonen, Jyrki P. (2)
Hellgren, Olof (2)
Christopoulos, Arthu ... (2)
Davenport, Anthony P ... (2)
Kelly, Eamonn (2)
visa fler...
Peters, John A. (2)
Veale, Emma L. (2)
Armstrong, Jane F. (2)
Faccenda, Elena (2)
Harding, Simon D. (2)
Davies, Jamie A. (2)
Abbracchio, Maria Pi ... (2)
Alexander, Wayne (2)
Al-hosaini, Khaled (2)
Barnes, Nicholas M. (2)
Bathgate, Ross (2)
Beaulieu, Jean-Marti ... (2)
Bernstein, Kenneth E ... (2)
Bettler, Bernhard (2)
Birdsall, Nigel J. M ... (2)
Blaho, Victoria (2)
Boulay, Francois (2)
Bousquet, Corinne (2)
Burnstock, Geoffrey (2)
Calo, Girolamo (2)
Castano, Justo P. (2)
Catt, Kevin J. (2)
Ceruti, Stefania (2)
Chazot, Paul (2)
Chiang, Nan (2)
Chini, Bice (2)
Chun, Jerold (2)
Cianciulli, Antonia (2)
Civelli, Olivier (2)
Clapp, Lucie H. (2)
Couture, Rejean (2)
Csaba, Zsolt (2)
Dahlgren, Claes, 194 ... (2)
Dent, Gordon (2)
Douglas, Steven D. (2)
Dournaud, Pascal (2)
Eguchi, Satoru (2)
Escher, Emanuel (2)
Filardo, Edward J. (2)
Fong, Tung (2)
Fumagalli, Marta (2)
Gainetdinov, Raul R. (2)
Gerard, Craig (2)
Gershengorn, Marvin (2)
visa färre...
Lärosäte
Uppsala universitet (5)
Lunds universitet (5)
Karolinska Institutet (4)
Göteborgs universitet (3)
Högskolan i Halmstad (1)
Stockholms universitet (1)
visa fler...
Linköpings universitet (1)
Chalmers tekniska högskola (1)
visa färre...
Språk
Engelska (7)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (5)
Naturvetenskap (3)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy