SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Openshaw P. J. M.) "

Sökning: WFRF:(Openshaw P. J. M.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Needham, E. J., et al. (författare)
  • Brain injury in COVID-19 is associated with dysregulated innate and adaptive immune responses
  • 2022
  • Ingår i: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 145:11, s. 4097-4107
  • Tidskriftsartikel (refereegranskat)abstract
    • COVID-19 is associated with neurological complications including stroke, delirium and encephalitis. Furthermore, a post-viral syndrome dominated by neuropsychiatric symptoms is common, and is seemingly unrelated to COVID-19 severity. The true frequency and underlying mechanisms of neurological injury are unknown, but exaggerated host inflammatory responses appear to be a key driver of COVID-19 severity. We investigated the dynamics of, and relationship between, serum markers of brain injury [neurofilament light (NfL), glial fibrillary acidic protein (GFAP) and total tau] and markers of dysregulated host response (autoantibody production and cytokine profiles) in 175 patients admitted with COVID-19 and 45 patients with influenza. During hospitalization, sera from patients with COVID-19 demonstrated elevations of NfL and GFAP in a severity-dependent manner, with evidence of ongoing active brain injury at follow-up 4 months later. These biomarkers were associated with elevations of pro-inflammatory cytokines and the presence of autoantibodies to a large number of different antigens. Autoantibodies were commonly seen against lung surfactant proteins but also brain proteins such as myelin associated glycoprotein. Commensurate findings were seen in the influenza cohort. A distinct process characterized by elevation of serum total tau was seen in patients at follow-up, which appeared to be independent of initial disease severity and was not associated with dysregulated immune responses unlike NfL and GFAP. These results demonstrate that brain injury is a common consequence of both COVID-19 and influenza, and is therefore likely to be a feature of severe viral infection more broadly. The brain injury occurs in the context of dysregulation of both innate and adaptive immune responses, with no single pathogenic mechanism clearly responsible. Needham et al. reveal elevations in blood biomarkers of brain injury in patients hospitalised with COVID-19. The changes, which were severity-dependent, were associated with dysregulated immune responses including increases in pro-inflammatory cytokines and autoantibodies. Ongoing active brain injury could still be seen months after infection.
  •  
2.
  • Auffray, C., et al. (författare)
  • COVID-19 and beyond : a call for action and audacious solidarity to all the citizens and nations, it is humanity’s fight
  • 2020
  • Ingår i: F1000 Research. - : F1000 Research Ltd. - 2046-1402. ; 9, s. 1130-18
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Severe acute respiratory syndrome coronavirus 2 (SARSCoV-2) belongs to a subgroup of coronaviruses rampant in bats for centuries. It caused the coronavirus disease 2019 (COVID-19) pandemic. Most patients recover, but a minority of severe cases experience acute respiratory distress or an inflammatory storm devastating many organs that can lead to patient death. The spread of SARS-CoV-2 was facilitated by the increasing intensity of air travel, urban congestion and human contact during the past decades. Until therapies and vaccines are available, tests for virus exposure, confinement and distancing measures have helped curb the pandemic. Vision: The COVID-19 pandemic calls for safeguards and remediation measures through a systemic response. Self-organizing initiatives by scientists and citizens are developing an advanced collective intelligence response to the coronavirus crisis. Their integration forms Olympiads of Solidarity and Health. Their ability to optimize our response to COVID-19 could serve as a model to trigger a global metamorphosis of our societies with far-reaching consequences for attacking fundamental challenges facing humanity in the 21st century. Mission: For COVID-19 and these other challenges, there is no alternative but action. Meeting in Paris in 2003, we set out to "rethink research to understand life and improve health." We have formed an international coalition of academia and industry ecosystems taking a systems medicine approach to understanding COVID-19 by thoroughly characterizing viruses, patients and populations during the pandemic, using openly shared tools. All results will be publicly available with no initial claims for intellectual property rights. This World Alliance for Health and Wellbeing will catalyze the creation of medical and health products such as diagnostic tests, drugs and vaccines that become common goods accessible to all, while seeking further alliances with civil society to bridge with socio-ecological and technological approaches that characterise urban systems, for a collective response to future health emergencies. 
  •  
3.
  • Butler, C. C., et al. (författare)
  • Oseltamivir plus usual care versus usual care for influenza-like illness in primary care: an open-label, pragmatic, randomised controlled trial
  • 2020
  • Ingår i: Lancet. - : Elsevier BV. - 0140-6736. ; 395:10217, s. 42-52
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Antivirals are infrequently prescribed in European primary care for influenza-like illness, mostly because of perceived ineffectiveness in real world primary care and because individuals who will especially benefit have not been identified in independent trials. We aimed to determine whether adding antiviral treatment to usual primary care for patients with influenza-like illness reduces time to recovery overall and in key subgroups. Methods We did an open-label, pragmatic, adaptive, randomised controlled trial of adding oseltamivir to usual care in patients aged 1 year and older presenting with influenza-like illness in primary care. The primary endpoint was time to recovery, defined as return to usual activities, with fever, headache, and muscle ache minor or absent. The trial was designed and powered to assess oseltamivir benefit overall and in 36 prespecified subgroups defined by age, comorbidity, previous symptom duration, and symptom severity, using a Bayesian piece-wise exponential primary analysis model. The trial is registered with the ISRCTN Registry, number ISRCTN 27908921. Findings Between Jan 15, 2016, and April 12, 2018, we recruited 3266 participants in 15 European countries during three seasonal influenza seasons, allocated 1629 to usual care plus oseltamivir and 1637 to usual care, and ascertained the primary outcome in 1533 (94%) and 1526 (93%). 1590 (52%) of 3059 participants had PCR-confirmed influenza infection. Time to recovery was shorter in participants randomly assigned to oseltamivir (hazard ratio 1.29, 95% Bayesian credible interval [BCrI] 1.20-1.39) overall and in 30 of the 36 prespecified subgroups, with estimated hazard ratios ranging from 1.13 to 1.72. The estimated absolute mean benefit from oseltamivir was 1.02 days (95% [BCrI] 0.74-1.31) overall, and in the prespecified subgroups, ranged from 0.70 (95% BCrI 0.30-1.20) in patients younger than 12 years, with less severe symptoms, no comorbidities, and shorter previous illness duration to 3.20 (95% BCrI 1.00-5.50) in patients aged 65 years or older who had more severe illness, comorbidities, and longer previous illness duration. Regarding harms, an increased burden of vomiting or nausea was observed in the oseltamivir group. Interpretation Primary care patients with influenza-like illness treated with oseltamivir recovered one day sooner on average than those managed by usual care alone. Older, sicker patients with comorbidities and longer previous symptom duration recovered 2-3 days sooner. Copyright (C) 2019 Elsevier Ltd. All rights reserved.
  •  
4.
  • Kousathanas, A, et al. (författare)
  • Whole-genome sequencing reveals host factors underlying critical COVID-19
  • 2022
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 607:7917, s. 97-
  • Tidskriftsartikel (refereegranskat)abstract
    • Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease.
  •  
5.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy