SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Opgenoorth Hermann) "

Sökning: WFRF:(Opgenoorth Hermann)

  • Resultat 1-10 av 49
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andrews, David, et al. (författare)
  • Control of the topside Martian ionosphere by crustal magnetic fields
  • 2015
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 120:4, s. 3042-3058
  • Tidskriftsartikel (refereegranskat)abstract
    • We present observations from the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) instrument onboard Mars Express of the thermal electron plasma density of the Martian ionosphere and investigate the extent to which it is influenced by the presence of Mars's remnant crustal magnetic fields. We use locally measured electron densities, derived when MARSIS is operating in active ionospheric sounding (AIS) mode, covering an altitude range from approximate to 300km to approximate to 1200km. We compare these measured densities to an empirical model of the dayside ionospheric plasma density in this diffusive transport-dominated regime. We show that small spatial-scale departures from the averaged values are strongly correlated with the pattern of the crustal fields. Persistently elevated densities are seen in regions of relatively stronger crustal fields across the whole altitude range. Comparing these results with measurements of the (scalar) magnetic field also obtained by MARSIS/AIS, we characterize the dayside strength of the draped magnetic fields in the same regions. Finally, we provide a revised empirical model of the plasma density in the Martian ionosphere, including parameterizations for both the crustal field-dominated and draping-dominated regimes.
  •  
2.
  • Andrews, David J., et al. (författare)
  • Determination of local plasma densities with the MARSIS radar : Asymmetries in the high-altitude Martian ionosphere
  • 2013
  • Ingår i: Journal of Geophysical Research: Space Physics. - : American Geophysical Union (AGU). - 2169-9380. ; 118:10, s. 6228-6242
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a novel method for the automatic retrieval of local plasma density measurements from the Mars advanced radar for subsurface and ionospheric sounding (MARSIS) active ionospheric sounder (AIS) instrument. The resulting large data set is then used to study the configuration of the Martian ionosphere at altitudes above approximate to 300km. An empirical calibration routine is used, which relates the local plasma density to the measured intensity of multiple harmonics of the local plasma frequency oscillation, excited in the plasma surrounding the antenna in response to the transmission of ionospheric sounding pulses. Enhanced accuracy is achieved in higherdensity (n(e)>150cm(-3)) plasmas, when MARSIS AIS is able to directly measure the fundamental frequency of the local plasma oscillation. To demonstrate the usefulness of this data set, the derived plasma densities are binned by altitude and solar zenith angle in regions over weak (|B-c|<20nT) and strong (|B-c|>20nT) crustal magnetic fields, and we find clear and consistent evidence for a significant asymmetry between these two regions. We show that within the approximate to 300-1200km altitude range sampled, the median plasma density is substantially higher on the dayside in regions of relatively stronger crustal fields than under equivalent illuminations in regions of relatively weaker crustal fields. Conversely, on the nightside, median plasma densities are found to be higher in regions of relatively weaker crustal fields. We suggest that the observed asymmetry arises as a result of the modulation of the efficiency of plasma transport processes by the irregular crustal fields and the generally horizontal draped interplanetary magnetic field.
  •  
3.
  • Andrews, David J., et al. (författare)
  • MARSIS Observations of Field-Aligned Irregularities and Ducted Radio Propagation in the Martian Ionosphere
  • 2018
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 123:8, s. 6251-6263
  • Tidskriftsartikel (refereegranskat)abstract
    • Knowledge of Mars's ionosphere has been significantly advanced in recent years by observations from Mars Express and lately Mars Atmosphere and Volatile EvolutioN. A topic of particular interest are the interactions between the planet's ionospheric plasma and its highly structured crustal magnetic fields and how these lead to the redistribution of plasma and affect the propagation of radio waves in the system. In this paper, we elucidate a possible relationship between two anomalous radar signatures previously reported in observations from the Mars Advanced Radar for Subsurface and Ionospheric Sounding instrument on Mars Express. Relatively uncommon observations of localized, extreme increases in the ionospheric peak density in regions of radial (cusp-like) magnetic fields and spread echo radar signatures are shown to be coincident with ducting of the same radar pulses at higher altitudes on the same field lines. We suggest that these two observations are both caused by a high electric field (perpendicular to B) having distinctly different effects in two altitude regimes. At lower altitudes, where ions are demagnetized and electrons magnetized, and recombination dominantes, a high electric field causes irregularities, plasma turbulence, electron heating, slower recombination, and ultimately enhanced plasma densities. However, at higher altitudes, where both ions and electrons are magnetized and atomic oxygen ions cannot recombine directly, the high electric field instead causes frictional heating, a faster production of molecular ions by charge exchange, and so a density decrease. The latter enables ducting of radar pulses on closed field lines, in an analogous fashion to interhemispheric ducting in the Earth's ionosphere.
  •  
4.
  • Andrews, David J., et al. (författare)
  • Oblique reflections in the Mars Express MARSIS data set : Stable density structures in the Martian ionosphere
  • 2014
  • Ingår i: Journal of Geophysical Research-Space Physics. - 2169-9380. ; 119:5, s. 3944-3960
  • Tidskriftsartikel (refereegranskat)abstract
    • The Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) onboard the European Space Agency's Mars Express (MEX) spacecraft routinely detects evidence of localized plasma density structures in the Martian dayside ionosphere. Such structures, likely taking the form of spatially extended elevations in the plasma density at a given altitude, give rise to oblique reflections in the Active Ionospheric Sounder data. These structures are likely related to the highly varied Martian crustal magnetic field. In this study we use the polar orbit of MEX to investigate the repeatability of the ionospheric structures producing these anomalous reflections, examining data taken in sequences of multiple orbits which pass over the same regions of the Martian surface under similar solar illuminations, within intervals lasting tens of days. Presenting three such examples, or case studies, we show for the first time that these oblique reflections are often incredibly stable, indicating that the underlying ionospheric structures are reliably reformed in the same locations and with qualitatively similar parameters. The visibility, or lack thereof, of a given oblique reflection on a single orbit can generally be attributed to variations in the crustal field within the ionosphere along the spacecraft trajectory. We show that, within these examples, oblique reflections are generally detected whenever the spacecraft passes over regions of intense near-radial crustal magnetic fields (i.e., with a cusp-like configuration). The apparent stability of these structures is an important feature that must be accounted for in models of their origin.
  •  
5.
  • Andrews, David J., et al. (författare)
  • Plasma observations during the Mars atmospheric "plume" event of March-April 2012
  • 2016
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 121:4, s. 3139-3154
  • Tidskriftsartikel (refereegranskat)abstract
    • We present initial analyses and conclusions from plasma observations made during the reported "Mars plume event" of March-April 2012. During this period, multiple independent amateur observers detected a localized, high-altitude "plume" over the Martian dawn terminator, the cause of which remains to be explained. The estimated brightness of the plume exceeds that expected for auroral emissions, and its projected altitude greatly exceeds that at which clouds are expected to form. We report on in situ measurements of ionospheric plasma density and solar wind parameters throughout this interval made by Mars Express, obtained over the same surface region but at the opposing terminator. Measurements in the ionosphere at the corresponding location frequently show a disturbed structure, though this is not atypical for such regions with intense crustal magnetic fields. We tentatively conclude that the formation and/or transport of this plume to the altitudes where it was observed could be due in part to the result of a large interplanetary coronal mass ejection (ICME) encountering the Martian system. Interestingly, we note that the only similar plume detection in May 1997 may also have been associated with a large ICME impact at Mars.
  •  
6.
  • Borälv, Eva (författare)
  • Substorm Features in the High-Latitude Ionosphere and Magnetosphere : Multi-Instrument Observations
  • 2003
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The space around Earth, confined in the terrestrial magnetosphere, is to some extent shielded from the Sun's solar wind plasma and magnetic field. During certain conditions, however, strong interaction can occur between the solar wind and the magnetosphere, resulting in magnetospheric activity of several forms, among which substorms and storms are the most prominent. A general framework for how these processes work have been outlayed through the history of research, however, there still remain questions to be answered. The most striking example regards the onset of substorms, where both the onset cause and location in the magnetosphere/ionosphere are still debated. These are clearly not easily solved problems, since a substorm is a global process, ideally requiring simultaneous measurements in the magnetotail and ionosphere. Investigated in this work are temporal and spatial scales for substorm and convection processes in the Earth's magnetosphere and ionosphere. This is performed by combining observations from a number of both ground-based and spacecraft-borne instruments. The observations indicate that the magnetotail's cross-section is involved to a larger spatial extent than previously considered in the substorm process. Furthermore, convection changes result in topological changes of the magnetosphere on a fast time scale. The results show that the magnetosphere is, on a global magnetospheric scale, highly dynamic during convection changes and ensuing substorms.
  •  
7.
  • Buchert, Stephan, et al. (författare)
  • SWARM observations of equatorial electron densities and topside GPS track losses
  • 2015
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 42:7, s. 2088-2092
  • Tidskriftsartikel (refereegranskat)abstract
    • The SWARM satellites have both upward looking GPS receivers and Langmuir probes. The receivers repeatedly lost track of the L1 band signal in January-February 2014 at postsunset hours, when SWARM was at nearly 500km altitude. This indicates that the signal was disturbed by ionospheric irregularities at this height and above. The track losses occurred right at density gradients associated with equatorial plasma bubbles and predominantly where the measured background density was highest. The signal showed strong phase scintillations rather than in amplitude, indicating that SWARM might be in the near field of an ionospheric phase screen. Density biteouts, depletions between steep gradients, were up to almost 3 orders of magnitude deep in the background of a more shallow trough centered at the magnetic equator. Comparison between satellites shows that the biteout structure strongly varied in longitude over approximate to 100km and has in north-south steep walls.
  •  
8.
  • Edberg, Niklas J. T., et al. (författare)
  • Effects of Saturn's magnetospheric dynamics on Titan's ionosphere
  • 2015
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 120:10, s. 8884-8898
  • Tidskriftsartikel (refereegranskat)abstract
    • We use the Cassini Radio and Plasma Wave Science/Langmuir probe measurements of the electron density from the first 110 flybys of Titan to study how Saturn's magnetosphere influences Titan's ionosphere. The data is first corrected for biased sampling due to varying solar zenith angle and solar energy flux (solar cycle effects). We then present results showing that the electron density in Titan's ionosphere, in the altitude range 1600-2400km, is increased by about a factor of 2.5 when Titan is located on the nightside of Saturn (Saturn local time (SLT) 21-03h) compared to when on the dayside (SLT 09-15 h). For lower altitudes (1100-1600km) the main dividing factor for the ionospheric density is the ambient magnetospheric conditions. When Titan is located in the magnetospheric current sheet, the electron density in Titan's ionosphere is about a factor of 1.4 higher compared to when Titan is located in the magnetospheric lobes. The factor of 1.4 increase in between sheet and lobe flybys is interpreted as an effect of increased particle impact ionization from approximate to 200eV sheet electrons. The factor of 2.5 increase in electron density between flybys on Saturn's nightside and dayside is suggested to be an effect of the pressure balance between thermal plus magnetic pressure in Titan's ionosphere against the dynamic pressure and energetic particle pressure in Saturn's magnetosphere.
  •  
9.
  • Edberg, Niklas J. T., et al. (författare)
  • Extreme densities in Titan's ionosphere during the T85 magnetosheath encounter
  • 2013
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 40:12, s. 2879-2883
  • Tidskriftsartikel (refereegranskat)abstract
    • We present Cassini Langmuir probe measurements of the highest electron number densities ever reported from the ionosphere of Titan. The measured density reached 4310cm(-3) during the T85 Titan flyby. This is at least 500cm(-3) higher than ever observed before and at least 50% above the average density for similar solar zenith angles. The peak of the ionospheric density is not reached on this flyby, making the maximum measured density a lower limit. During this flyby, we also report that an impacting coronal mass ejection (CME) leaves Titan in the magnetosheath of Saturn, where it is exposed to shocked solar wind plasma for at least 2 h 45 min. We suggest that the solar wind plasma in the magnetosheath during the CME conditions significantly modifies Titan's ionosphere by an addition of particle impact ionization by precipitating protons.
  •  
10.
  • Edberg, Niklas J. T., et al. (författare)
  • Solar cycle modulation of Titan's ionosphere
  • 2013
  • Ingår i: Journal of Geophysical Research-Space Physics. - : American Geophysical Union (AGU). - 2169-9380. ; 118:8, s. 5255-5264
  • Tidskriftsartikel (refereegranskat)abstract
    • During the six Cassini Titan flybys T83-T88 (May 2012 to November 2012) the electron density in the ionospheric peak region, as measured by the radio and plasma wave science instrument/Langmuir probe, has increased significantly, by 15-30%, compared to previous average. These measurements suggest that a longterm change has occurred in the ionosphere of Titan, likely caused by the rise to the new solar maximum with increased EUV fluxes. We compare measurements from TA, TB, and T5, from the declining phase of solar cycle 23 to the recent T83-T88 measurements during cycle 24, since the solar irradiances from those two intervals are comparable. The peak electron densities normalized to a common solar zenith angle N-norm from those two groups of flybys are comparable but increased compared to the solar minimum flybys (T16-T71). The integrated solar irradiance over the wavelengths 1-80nm, i.e., the solar energy flux, F-e, correlates well with the observed ionospheric peak density values. Chapman layer theory predicts that NnormFek, with k=0.5. We find observationally that the exponent k=0.540.18. Hence, the observations are in good agreement with theory despite the fact that many assumptions in Chapman theory are violated. This is also in good agreement with a similar study by Girazian and Withers (2013) on the ionosphere of Mars. We use this power law to estimate the peak electron density at the subsolar point of Titan during solar maximum conditions and find it to be about 6500cm(-3), i.e., 85-160% more than has been measured during the entire Cassini mission.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 49

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy