SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Opitom Cyrielle) "

Sökning: WFRF:(Opitom Cyrielle)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bagnulo, Stefano, et al. (författare)
  • Optical Spectropolarimetry of Binary Asteroid Didymos-Dimorphos before and after the DART Impact
  • 2023
  • Ingår i: Astrophysical Journal Letters. - : Institute of Physics (IOP). - 2041-8205 .- 2041-8213. ; 945:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We have monitored the Didymos-Dimorphos binary asteroid in spectropolarimetric mode in the optical range before and after the DART impact. The ultimate goal was to obtain constraints on the characteristics of the ejected dust for modeling purposes. Before impact, Didymos exhibited a linear polarization rapidly increasing with phase angle, reaching a level of ∼5% in the blue and ∼4.5% in the red. The shape of the polarization spectrum was anticorrelated with that of its reflectance spectrum, which appeared typical of an S-class asteroid. After impact, the level of polarization dropped by about 1 percentage point (pp) in the blue band and about 0.5 pp in the red band, then continued to linearly increase with phase angle, with a slope similar to that measured prior to impact. The polarization spectra, once normalized by their values at an arbitrary wavelength, show very little or no change over the course of all observations before and after impact. The lack of any remarkable change in the shape of the polarization spectrum after impact suggests that the way in which polarization varies with wavelength depends on the composition of the scattering material, rather than on its structure, be this a surface or a debris cloud.
  •  
2.
  • Gray, Zuri, et al. (författare)
  • Polarimetry of Didymos–Dimorphos: Unexpected Long-term Effects of the DART Impact
  • 2024
  • Ingår i: The Planetary Science Journal. - : Institute of Physics (IOP). - 2632-3338. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We have monitored the Didymos–Dimorphos binary system in imaging polarimetric mode before and after the impact from the Double Asteroid Redirection Test mission. A previous spectropolarimetric study showed that the impact caused a dramatic drop in polarization. Our longer-term monitoring shows that the polarization of the post-impact system remains lower than the pre-impact system even months after the impact, suggesting that some fresh ejecta material remains in the system at the time of our observations, either in orbit or settled on the surface. The slope of the post-impact polarimetric curve is shallower than that of the pre-impact system, implying an increase in albedo of the system. This suggests that the ejected material is composed of smaller and possibly brighter particles than those present on the pre-impact surface of the asteroid. Our polarimetric maps show that the dust cloud ejected immediately after the impact polarizes light in a spatially uniform manner (and at a lower level than pre-impact). Later maps exhibit a gradient in polarization between the photocentre (which probes the asteroid surface) and the surrounding cloud and tail. The polarization occasionally shows some small-scale variations, the source of which is not yet clear. The polarimetric phase curve of Didymos–Dimorphos resembles that of the S-type asteroid class.
  •  
3.
  • Jones, Geraint H., et al. (författare)
  • The Comet Interceptor Mission
  • 2024
  • Ingår i: Space Science Reviews. - : Springer Nature. - 0038-6308 .- 1572-9672. ; 220:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we describe the novel, multi-point Comet Interceptor mission. It is dedicated to the exploration of a little-processed long-period comet, possibly entering the inner Solar System for the first time, or to encounter an interstellar object originating at another star. The objectives of the mission are to address the following questions: What are the surface composition, shape, morphology, and structure of the target object? What is the composition of the gas and dust in the coma, its connection to the nucleus, and the nature of its interaction with the solar wind? The mission was proposed to the European Space Agency in 2018, and formally adopted by the agency in June 2022, for launch in 2029 together with the Ariel mission. Comet Interceptor will take advantage of the opportunity presented by ESA’s F-Class call for fast, flexible, low-cost missions to which it was proposed. The call required a launch to a halo orbit around the Sun-Earth L2 point. The mission can take advantage of this placement to wait for the discovery of a suitable comet reachable with its minimum Δ V capability of 600 ms − 1 . Comet Interceptor will be unique in encountering and studying, at a nominal closest approach distance of 1000 km, a comet that represents a near-pristine sample of material from the formation of the Solar System. It will also add a capability that no previous cometary mission has had, which is to deploy two sub-probes – B1, provided by the Japanese space agency, JAXA, and B2 – that will follow different trajectories through the coma. While the main probe passes at a nominal 1000 km distance, probes B1 and B2 will follow different chords through the coma at distances of 850 km and 400 km, respectively. The result will be unique, simultaneous, spatially resolved information of the 3-dimensional properties of the target comet and its interaction with the space environment. We present the mission’s science background leading to these objectives, as well as an overview of the scientific instruments, mission design, and schedule.
  •  
4.
  • Li, Jian-Yang, et al. (författare)
  • Ejecta from the DART-produced active asteroid Dimorphos
  • 2023
  • Ingår i: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 616, s. 452-456
  • Tidskriftsartikel (refereegranskat)abstract
    • Some active asteroids have been proposed to be formed as a result of impact events1. Because active asteroids are generally discovered by chance only after their tails have fully formed, the process of how impact ejecta evolve into a tail has, to our knowledge, not been directly observed. The Double Asteroid Redirection Test (DART) mission of NASA2, in addition to having successfully changed the orbital period of Dimorphos3, demonstrated the activation process of an asteroid resulting from an impact under precisely known conditions. Here we report the observations of the DART impact ejecta with the Hubble Space Telescope from impact time T + 15 min to T + 18.5 days at spatial resolutions of around 2.1 km per pixel. Our observations reveal the complex evolution of the ejecta, which are first dominated by the gravitational interaction between the Didymos binary system and the ejected dust and subsequently by solar radiation pressure. The lowest-speed ejecta dispersed through a sustained tail that had a consistent morphology with previously observed asteroid tails thought to be produced by an impact4,5. The evolution of the ejecta after the controlled impact experiment of DART thus provides a framework for understanding the fundamental mechanisms that act on asteroids disrupted by a natural impact1,6.
  •  
5.
  • Schwamb, Megan E., et al. (författare)
  • Tuning the Legacy Survey of Space and Time (LSST) Observing Strategy for Solar System Science
  • 2023
  • Ingår i: Astrophysical Journal Supplement Series. - : Iop Publishing Ltd. - 0067-0049 .- 1538-4365. ; 266:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The Vera C. Rubin Observatory is expected to start the Legacy Survey of Space and Time (LSST) in early to mid-2025. This multiband wide-field synoptic survey will transform our view of the solar system, with the discovery and monitoring of over five million small bodies. The final survey strategy chosen for LSST has direct implications on the discoverability and characterization of solar system minor planets and passing interstellar objects. Creating an inventory of the solar system is one of the four main LSST science drivers. The LSST observing cadence is a complex optimization problem that must balance the priorities and needs of all the key LSST science areas. To design the best LSST survey strategy, a series of operation simulations using the Rubin Observatory scheduler have been generated to explore the various options for tuning observing parameters and prioritizations. We explore the impact of the various simulated LSST observing strategies on studying the solar system's small body reservoirs. We examine what are the best observing scenarios and review what are the important considerations for maximizing LSST solar system science. In general, most of the LSST cadence simulations produce +/- 5% or less variations in our chosen key metrics, but a subset of the simulations significantly hinder science returns with much larger losses in the discovery and light-curve metrics.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy