SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Orsi Silvio) "

Sökning: WFRF:(Orsi Silvio)

  • Resultat 1-10 av 22
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adriani, O., et al. (författare)
  • An anomalous positron abundance in cosmic rays with energies 1.5-100 GeV
  • 2009
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 458:7238, s. 607-609
  • Tidskriftsartikel (refereegranskat)abstract
    • Antiparticles account for a small fraction of cosmic rays and are known to be produced in interactions between cosmic-ray nuclei and atoms in the interstellar medium(1), which is referred to as a 'secondary source'. Positrons might also originate in objects such as pulsars(2) and microquasars(3) or through dark matter annihilation(4), which would be 'primary sources'. Previous statistically limited measurements(5-7) of the ratio of positron and electron fluxes have been interpreted as evidence for a primary source for the positrons, as has an increase in the total electron+positron flux at energies between 300 and 600 GeV (ref. 8). Here we report a measurement of the positron fraction in the energy range 1.5-100 GeV. We find that the positron fraction increases sharply overmuch of that range, in a way that appears to be completely inconsistent with secondary sources. We therefore conclude that a primary source, be it an astrophysical object or dark matter annihilation, is necessary.
  •  
2.
  • Adriani, O., et al. (författare)
  • New Measurement of the Antiproton-to-Proton Flux Ratio up to 100 GeV in the Cosmic Radiation
  • 2009
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 102:5
  • Tidskriftsartikel (refereegranskat)abstract
    • A new measurement of the cosmic-ray antiproton-to-proton flux ratio between 1 and 100 GeV is presented. The results were obtained with the PAMELA experiment, which was launched into low-Earth orbit on-board the Resurs-DK1 satellite on June 15th 2006. During 500 days of data collection a total of about 1000 antiprotons have been identified, including 100 above an energy of 20 GeV. The high-energy results are a tenfold improvement in statistics with respect to all previously published data. The data follow the trend expected from secondary production calculations and significantly constrain contributions from exotic sources, e. g., dark matter particle annihilations.
  •  
3.
  • Adriani, O., et al. (författare)
  • Positrons and electrons in primary cosmic rays as measured in the PAMELA experiment
  • 2009
  • Ingår i: Bulletin of the Russian Academy of Sciences: Physics. - 1062-8738. ; 73:5, s. 568-570
  • Tidskriftsartikel (refereegranskat)abstract
    • The PAMELA experiment is being carried out on board the Russian satellite Resurs DK1 placed in the near-earth near-polar orbit on June 15, 2006. The apparatus comprising a silicon-strip magnetic spectrometer and an electromagnetic calorimeter allows measurement of electron and positron fluxes in cosmic rays in a wide energy interval from ∼100 MeV to hundreds of GeV. The high-energy electron and positron separation technique is discussed and the data on positron-to-electron ratio in primary cosmic rays up to E ≃ 10 GeV from the 2006 - 2007 measurements are reported in this work.
  •  
4.
  • Adriani, O., et al. (författare)
  • Secondary electron and positron fluxes in the near-Earth space observed in the ARINA and PAMELA experiments
  • 2009
  • Ingår i: Bulletin of the Russian Academy of Sciences: Physics. - 1062-8738. ; 73:3, s. 364-366
  • Tidskriftsartikel (refereegranskat)abstract
    • Secondary electron and positron fluxes in the energy range from 3 MeV to 7 GeV were measured with the ARINA and PAMELA spectrometers onboard the Resurs-DK satellite launched on June 15, 2006 into an elliptical orbit with an inclination of 70.4° and an altitude of 350-600 km. It is shown that positrons dominate over electrons by a factor of up to 4-5 in the geomagnetic equator region (L < 1.2 and B > 0.25).
  •  
5.
  • Adriani, O., et al. (författare)
  • The Pamela experiment ready for flight
  • 2007
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 572:1, s. 471-473
  • Tidskriftsartikel (refereegranskat)abstract
    • The Pamela apparatus will allow precise measurements of cosmic rays in Low Earth Orbit, mainly focusing on the antiparticles component. The apparatus is now ready for flight, and the launch is foreseen during June 2006. The paper briefly reports the status of the experiment, and the performances of the various components as measured before the launch.
  •  
6.
  • Adriani, O., et al. (författare)
  • The PAMELA space mission
  • 2008
  • Ingår i: Astroparticle, Part. Space Phys., Detect. Med. Phys. Appl. - Proc. Conf.. - : WORLD SCIENTIFIC. - 9812819088 - 9789812819086 ; , s. 858-864
  • Konferensbidrag (refereegranskat)abstract
    • The PAMELA (a Payload for Antimatter-Matter Exploration and Light-nuclei Astrophysics) experiment, is a satellite-borne particle spectrometer. It was launched on 15th June 2006 from the Baikonur cosmodrome in Kazakhstan, is installed into the Russian Resurs-DK1 satellite. PAMELA is composed of a time-of-flight system, a magnetic spectrometer, a silicon-tungsten electromagnetic calorimeter, an anticoincidence system, a shower tail catcher scintillator and a neutron detector. Among the PAMELA major objectives are the study of charged particles in the cosmic radiation, the investigation of the nature of dark matter, by mean of the measure of the cosmic-ray antiproton and positron spectra over the largest energy range ever achieved. PAMELA has been in a nearly continuous data taking mode since llth July 2006. The status of the apparatus and performances will be presented.
  •  
7.
  • Bongi, M, et al. (författare)
  • PAMELA : A satellite experiment for antiparticles measurement in cosmic rays
  • 2004
  • Ingår i: IEEE Transactions on Nuclear Science. - 0018-9499 .- 1558-1578. ; 51:3, s. 854-859
  • Tidskriftsartikel (refereegranskat)abstract
    • PAMELA is a satellite-borne experiment that will study the antiproton and positron fluxes in cosmic rays in a wide range of energy (from 80 MeV up to 190 GeV for antiprotons and from 50 MeV up to 270 GeV for positrons) and with high statistics, and that will measure the antihelium/helium ratio with a sensitivity of the order of 10(-8). The detector will fly on-board a polar orbiting Resurs DK1 satellite, which will be launched into space by a Soyuz rocket in 2004 from Baikonur cosmodrome in Kazakhstan, for a 3-year-long mission. Particle identification and energy measurements are performed in the PAMELA apparatus using the following subdetectors: a magnetic spectrometer made up of a permanent magnet equipped with double-sided microstrip silicon detectors, an electromagnetic imaging calorimeter composed of layers of tungsten absorber and silicon detectors planes, a transition radiation detector made of straw tubes interleaved with carbon fiber radiators, a plastic scintillator time-of-flight and trigger system, a set of anticounter plastic scintillator detectors, and a neutron detector. The features of the detectors and the main results obtained in beam test sessions are presented.
  •  
8.
  • Bonvicini, V., et al. (författare)
  • Performance of the PAMELA Si-W imaging calorimeter in space
  • 2009
  • Ingår i: Journal of Physics, Conference Series. - : IOP Publishing. - 1742-6588 .- 1742-6596. ; 160, s. 012039-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Payload for Antimatter-Matter Exploration and Light Nuclei Astrophysics (PAMELA), primarily designed to directly measure antiparticles (antiprotons and positrons) in the cosmic radiation, was launched successfully on June 15th, 2006, and, since then, it is in continuous data taking. The calorimeter of the PAMELA apparatus has been designed to identify antiprotons from an electron background and positrons from a background of protons with high efficiency and rejection power. It is a sampling silicon-tungsten imaging calorimeter, which comprises 44 single-sided silicon sensor planes (380 μm thick) interleaved with 22 plates of tungsten absorber (0.74 X0 each). It is the first silicon-tungsten calorimeter to be launched in space. In this work we present the in-orbit performance of the calorimeter, including the measured identification capabilities. The calorimeter provides a proton rejection factor of ∼105 while keeping a high efficiency in selecting electrons and positrons, thus fulfilling the identification power needed to reach the primary scientific objectives of PAMELA. We show also that, after almost two years of operation in space, the calorimeter is still performing nominally.
  •  
9.
  • Casolino, M., et al. (författare)
  • Cosmic-ray observations of the heliosphere with the PAMELA experiment
  • 2006
  • Ingår i: Astrophysics. - : Elsevier BV. ; , s. 1848-1852
  • Konferensbidrag (refereegranskat)abstract
    • The PAMELA experiment is a multi-purpose apparatus built around a permanent magnet spectrometer, with the main goal of studying in detail the antiparticle component of cosmic rays. The apparatus will be carried in space by means of a Russian satellite, due to launch in 2005, for a three year-long mission. The characteristics of the detectors composing the instrument, alongside the long lifetime of the mission and the orbital characteristics of the satellite, will allow to address several items of cosmic-ray physics. In this paper, we will focus on the solar and heliospheric observation capabilities of PAMELA.
  •  
10.
  • Casolino, M., et al. (författare)
  • Launch of the space experiment PAMELA
  • 2008
  • Ingår i: Advances in Space Research. - : Elsevier. - 0273-1177 .- 1879-1948. ; 42:3, s. 455-466
  • Tidskriftsartikel (refereegranskat)abstract
    • PAMELA is a satellite borne experiment designed to study with great accuracy cosmic rays of galactic, solar, and trapped nature in a wide energy range (protons 80 MeV-700 GeV, electrons 50 MeV-400 GeV). Main objective is the study of the antimatter component: antiprotons (80 MeV-190 GeV), positrons (50 MeV-270 GeV) and search for antimatter with a precision of the order of 10-8. The experiment, housed on board the Russian Resurs-DK I satellite, was launched on June 15th, 2006 in a 350 x 600 km orbit with all inclination of 70'. The detector is composed of a series of scintillator counters arranged at the extremities of a permanent magnet spectrometer to provide charge, time-of-flight, and rigidity information. Lepton/hadron identification is performed by a silicon-tungsten calorimeter and a neutron detector placed at the bottom of the device. An anticounter system is used offline to reject false triggers coming from the satellite. In self-trigger mode the calorimeter, the neutron detector, and a shower tail catcher are capable of an independent measure of the lepton component up to 2 TeV. In this work we describe the experiment, its scientific objectives, and the performance in the first months after launch.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 22

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy