SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Orsolini Y. J.) "

Sökning: WFRF:(Orsolini Y. J.)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sen, P, et al. (författare)
  • Vaccine hesitancy decreases in rheumatic diseases, long-term concerns remain in myositis: a comparative analysis of the COVAD surveys
  • 2023
  • Ingår i: Rheumatology (Oxford, England). - : Oxford University Press (OUP). - 1462-0332 .- 1462-0324. ; 62:10, s. 3291-3301
  • Tidskriftsartikel (refereegranskat)abstract
    • ObjectiveCOVID-19 vaccines have a favorable safety profile in patients with autoimmune rheumatic diseases (AIRDs) such as idiopathic inflammatory myopathies (IIMs); however, hesitancy continues to persist among these patients. Therefore, we studied the prevalence, predictors and reasons for hesitancy in patients with IIMs, other AIRDs, non-rheumatic autoimmune diseases (nrAIDs) and healthy controls (HCs), using data from the two international COVID-19 Vaccination in Autoimmune Diseases (COVAD) e-surveys.MethodsThe first and second COVAD patient self-reported e-surveys were circulated from March to December 2021, and February to June 2022 (ongoing). We collected data on demographics, comorbidities, COVID-19 infection and vaccination history, reasons for hesitancy, and patient reported outcomes. Predictors of hesitancy were analysed using regression models in different groups.ResultsWe analysed data from 18 882 (COVAD-1) and 7666 (COVAD-2) respondents. Reassuringly, hesitancy decreased from 2021 (16.5%) to 2022 (5.1%) (OR: 0.26; 95% CI: 0.24, 0.30, P < 0.001). However, concerns/fear over long-term safety had increased (OR: 3.6; 95% CI: 2.9, 4.6, P < 0.01). We noted with concern greater skepticism over vaccine science among patients with IIMs than AIRDs (OR: 1.8; 95% CI: 1.08, 3.2, P = 0.023) and HCs (OR: 4; 95% CI: 1.9, 8.1, P < 0.001), as well as more long-term safety concerns/fear (IIMs vs AIRDs – OR: 1.9; 95% CI: 1.2, 2.9, P = 0.001; IIMs vs HCs – OR: 5.4 95% CI: 3, 9.6, P < 0.001). Caucasians [OR 4.2 (1.7–10.3)] were likely to be more hesitant, while those with better PROMIS physical health score were less hesitant [OR 0.9 (0.8–0.97)].ConclusionVaccine hesitancy has decreased from 2021 to 2022, long-term safety concerns remain among patients with IIMs, particularly in Caucasians and those with poor physical function.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Koenigk, Torben, et al. (författare)
  • Impact of Arctic sea ice variations on winter temperature anomalies in northern hemispheric land areas
  • 2019
  • Ingår i: Climate Dynamics. - : Springer Science and Business Media LLC. - 0930-7575 .- 1432-0894. ; 52:5-6, s. 3111-3137
  • Tidskriftsartikel (refereegranskat)abstract
    • Coordinated numerical ensemble experiments with six different state-of-the-art atmosphere models have been used in order to evaluate the respective impact of the observed Arctic sea ice and sea surface temperature (SST) variations on air temperature variations in mid and high latitude land areas. Two sets of experiments have been designed; in the first set (EXP1), observed daily sea ice concentration and SST variations are used as lower boundary forcing over 1982-2014 while in the second set (EXP2) the SST variations are replaced by the daily SST climatology. The observed winter 2m air temperature (T2m) variations are relatively well reproduced in a number of mid and high latitude land areas in EXP1, with best agreement in southwestern North America and northern Europe. Sea ice variations are important for the interannual T2m variations in northern Europe but have limited impact on all other mid and high latitude land regions. In particular, sea ice variations do not contribute to the observed opposite variations in the Arctic and mid latitude in our model experiments. The spread across ensemble members is large and many ensemble members are required to reproduce the observed T2m variations over northern Europe in our models. The amplitude of T2m anomalies in the coldest observed winters over northern Europe is not reproduced by our multi-model ensemble means. However, the sea ice conditions in these respective winters and mainly the thermodynamic response to the ice anomalies lead to an enhanced likelihood for occurrence of colder than normal winters and extremely cold winters. Still, the main reason for the observed extreme cold winters is internal atmospheric dynamics. The coldest simulated northern European winters in EXP1 and EXP2 between 1982 and 2014 show the same large scale T2m and atmospheric circulation anomaly patterns as the observed coldest winters, indicating that the models are well able to reproduce the processes, which cause these cold anomalies. The results are robust across all six models used in this study.
  •  
7.
  • Randall, C. E., et al. (författare)
  • Stratospheric effects of energetic particle precipitation in 2003-2004
  • 2005
  • Ingår i: Geophysical Research Letters. - 1944-8007 .- 0094-8276. ; 32:5, s. 1-4
  • Tidskriftsartikel (refereegranskat)abstract
    • Upper stratospheric enhancements in NOx (NO and NO2) were observed at high northern latitudes from March through at least July of 2004. Multi-satellite data analysis is used to examine the temporal evolution of the enhancements, to place them in historical context, and to investigate their origin. The enhancements were a factor of 4 higher than nominal at some locations, and are unprecedented in the northern hemisphere since at least 1985. They were accompanied by reductions in O-3 of more than 60% in some cases. The analysis suggests that energetic particle precipitation led to substantial NOx production in the upper atmosphere beginning with the remarkable solar storms in late October 2003 and possibly persisting through January. Downward transport of the excess NOx, facilitated by unique meteorological conditions in 2004 that led to an unusually strong upper stratospheric vortex from late January through March, caused the enhancements.
  •  
8.
  • Orsolini, Y. J., et al. (författare)
  • Modelling the descent of nitric oxide during the elevated stratopause event of January 2013
  • 2017
  • Ingår i: Journal of Atmospheric and Solar-Terrestrial Physics. - : Elsevier BV. - 1364-6826. ; 155, s. 50-61
  • Tidskriftsartikel (refereegranskat)abstract
    • Using simulations with a whole-atmosphere chemistry-climate model nudged by meteorological analyses, global satellite observations of nitrogen oxide (NO) and water vapour by the Sub-Millimetre Radiometer instrument (SMR), of temperature by the Microwave Limb Sounder (MLS), as well as local radar observations, this study examines the recent major stratospheric sudden warming accompanied by an elevated stratopause event (ESE) that occurred in January 2013. We examine dynamical processes during the ESE, including the role of planetary wave, gravity wave and tidal forcing on the initiation of the descent in the mesosphere-lower thermosphere (MLT) and its continuation throughout the mesosphere and stratosphere, as well as the impact of model eddy diffusion. We analyse the transport of NO and find the model underestimates the large descent of NO compared to SMR observations. We demonstrate that the discrepancy arises abruptly in the MLT region at a time when the resolved wave forcing and the planetary wave activity increase, just before the elevated stratopause reforms. The discrepancy persists despite doubling the model eddy diffusion. While the simulations reproduce an enhancement of the semi-diurnal tide following the onset of the 2013 SSW, corroborating new meteor radar observations at high northern latitudes over Trondheim (63.4°N), the modelled tidal contribution to the forcing of the mean meridional circulation and to the descent is a small portion of the resolved wave forcing, and lags it by about ten days.
  •  
9.
  • Hendrickx, Koen, 1990-, et al. (författare)
  • Observation of 27-day solar cycles in mesospheric production and descent of EPP-produced NO
  • 2015
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 120:10, s. 8978-8988
  • Tidskriftsartikel (refereegranskat)abstract
    • Nitric oxide (NO) is produced by energetic particle precipitation (EPP) in the mesosphere-lower thermosphere (MLT) region, and during the polar winter, NO can descend to stratospheric altitudes where it destroys ozone. In this paper, we study the general scenario, as opposed to a case study, of NO production in the thermosphere due to energetic particles in the auroral region. We first investigate the relationship between NO production and two geomagnetic indices. The analysis indicates that the auroral electrojet index is a more suitable proxy for EPP-produced NO than the typically used midlatitude Ap index. In order to study the production and downward transport of NO from the lower thermosphere to the mesosphere, we perform superposed epoch analyses on NO observations made by the Solar Occultation For Ice Experiment instrument on board the Aeronomy of Ice in the Mesosphere satellite. The epoch analysis clearly shows the impact of the 27 day solar cycle on NO production. The effect is observed down to an altitude range of about 50 km to 65 km, depending on the hemisphere and the occurrence of stratospheric warmings. Initially, a rapid downward transport is noted during the first 10 days after EPP onset to an altitude of about 80–85 km, which is then followed by a slower downward transport of approximately 1–1.2 km/d to lower mesospheric altitudes in the order of 30 days.
  •  
10.
  • Orsolini, Y. J., et al. (författare)
  • Descent from the polar mesosphere and anomalously high stratopause observed in 8 years of water vapor and temperature satellite observations by the Odin Sub-Millimeter Radiometer
  • 2010
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 115:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Using newly analyzed mesospheric water vapor and temperature observations from the Sub-Millimeter Radiometer instrument aboard the Odin research satellite over the period 2001-2009, we present evidence for an anomalously strong descent of dry mesospheric air from the lower mesosphere into the upper stratosphere in the winters of 2004, 2006, and 2009. In the three cases, the descent follows the recovery of the upper stratospheric polar vortex from a major midwinter stratospheric sudden warming. It is also accompanied by the rapid formation of an anomalously warm polar mesospheric layer, i.e., an elevated polar stratopause, near 75 km, and its slower descent to prewarming level (near 1 hPa) over 1.5-2 months. These three winters stand out in the current record of Odin/Sub-Millimeter Radiometer observations started in July 2001.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy