SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ortega Martorell Sandra) "

Sökning: WFRF:(Ortega Martorell Sandra)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Khudhair, Zahraa S., et al. (författare)
  • A Review of Hybrid Soft Computing and Data Pre-Processing Techniques to Forecast Freshwater Quality’s Parameters: Current Trends and Future Directions
  • 2022
  • Ingår i: Environments. - : MDPI. - 2076-3298. ; 9:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Water quality has a significant influence on human health. As a result, water quality parameter modelling is one of the most challenging problems in the water sector. Therefore, the major factor in choosing an appropriate prediction model is accuracy. This research aims to analyse hybrid techniques and pre-processing data methods in freshwater quality modelling and forecasting. Hybrid approaches have generally been seen as a potential way of improving the accuracy of water quality modelling and forecasting compared with individual models. Consequently, recent studies have focused on using hybrid models to enhance forecasting accuracy. The modelling of dissolved oxygen is receiving more attention. From a review of relevant articles, it is clear that hybrid techniques are viable and precise methods for water quality prediction. Additionally, this paper presents future research directions to help researchers predict freshwater quality variables.
  •  
2.
  • Lisboa, Paulo J.G., et al. (författare)
  • Enhanced survival prediction using explainable artificial intelligence in heart transplantation
  • 2022
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The most limiting factor in heart transplantation is the lack of donor organs. With enhanced prediction of outcome, it may be possible to increase the life-years from the organs that become available. Applications of machine learning to tabular data, typical of clinical decision support, pose the practical question of interpretation, which has technical and potential ethical implications. In particular, there is an issue of principle about the predictability of complex data and whether this is inherent in the data or strongly dependent on the choice of machine learning model, leading to the so-called accuracy-interpretability trade-off. We model 1-year mortality in heart transplantation data with a self-explaining neural network, which is benchmarked against a deep learning model on the same development data, in an external validation study with two data sets: (1) UNOS transplants in 2017–2018 (n = 4750) for which the self-explaining and deep learning models are comparable in their AUROC 0.628 [0.602,0.654] cf. 0.635 [0.609,0.662] and (2) Scandinavian transplants during 1997–2018 (n = 2293), showing good calibration with AUROCs of 0.626 [0.588,0.665] and 0.634 [0.570, 0.698], respectively, with and without missing data (n = 982). This shows that for tabular data, predictive models can be transparent and capture important nonlinearities, retaining full predictive performance.
  •  
3.
  • Mohammed, Sarah J., et al. (författare)
  • Application of hybrid machine learning models and data pre-processing to predict water level of watersheds: Recent trends and future perspective
  • 2022
  • Ingår i: Cogent Engineering. - : Taylor & Francis Group. - 2331-1916. ; 9:1
  • Forskningsöversikt (refereegranskat)abstract
    • The community’s well-being and economic livelihoods are heavily influenced by the water level of watersheds. The changes in water levels directly affect the circulation processes of lakes and rivers that control water mixing and bottom sediment resuspension, further affecting water quality and aquatic ecosystems. Thus, these considerations have made the water level monitoring process essential to save the environment. Machine learning hybrid models are emerging robust tools that are successfully applied for water level monitoring. Various models have been developed, and selecting the optimal model would be a lengthy procedure. A timely, detailed, and instructive overview of the models’ concepts and historical uses would be beneficial in preventing researchers from overlooking models’ potential selection and saving significant time on the problem. Thus, recent research on water level prediction using hybrid machines is reviewed in this article to present the “state of the art” on the subject and provide some suggestions on research methodologies and models. This comprehensive study classifies hybrid models into four types algorithm parameter optimisation-based hybrid models (OBH), pre-processing-based hybrid models (PBH), the components combination-based hybrid models (CBH), and hybridisation of parameter optimisation-based with preprocessing-based hybrid models (HOPH); furthermore, it explains the pre-processing of data in detail. Finally, the most popular optimisation methods and future perspectives and conclusions have been discussed.
  •  
4.
  • Zubaidi, Salah L., et al. (författare)
  • Assessing the Benefits of Nature-Inspired Algorithms for the Parameterization of ANN in the Prediction of Water Demand
  • 2023
  • Ingår i: Journal of water resources planning and management. - : American Society of Civil Engineers (ASCE). - 0733-9496 .- 1943-5452. ; 149:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate forecasting techniques for a stochastic pattern of water demand are essential for any city that faces high variability in climate factors and a shortage of water resources. This study was the first research to assess the impact of climatic factors on urban water demand in Iraq, which is one of the hottest countries in the world. We developed a novel forecasting methodology that includes data preprocessing and an artificial neural network (ANN) model, which we integrated with a recent nature-inspired metaheuristic algorithm [marine predators algorithm (MPA)]. The MPA-ANN algorithm was compared with four nature-inspired metaheuristic algorithms. Nine climatic factors were examined with different scenarios to simulate the monthly stochastic urban water demand over 11 years for Baghdad City, Iraq. The results revealed that (1) precipitation, solar radiation, and dew point temperature are the most relevant factors; (2) the ANN model becomes more accurate when it is used in combination with the MPA; and (3) this methodology can accurately forecast water demand considering the variability in climatic factors. These findings are of considerable significance to water utilities in planning, reviewing, and comparing the availability of freshwater resources and increasing water requests (i.e., adaptation variability of climatic factors). 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy