SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Orvis J) "

Sökning: WFRF:(Orvis J)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fenstermacher, M.E., et al. (författare)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
2.
  • Callaway, EM, et al. (författare)
  • A multimodal cell census and atlas of the mammalian primary motor cortex
  • 2021
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 598:7879, s. 86-102
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties and cellular resolution input–output mapping, integrated through cross-modal computational analysis. Our results advance the collective knowledge and understanding of brain cell-type organization1–5. First, our study reveals a unified molecular genetic landscape of cortical cell types that integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a consensus taxonomy of transcriptomic types and their hierarchical organization that is conserved from mouse to marmoset and human. Third, in situ single-cell transcriptomics provides a spatially resolved cell-type atlas of the motor cortex. Fourth, cross-modal analysis provides compelling evidence for the transcriptomic, epigenomic and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types. We further present an extensive genetic toolset for targeting glutamatergic neuron types towards linking their molecular and developmental identity to their circuit function. Together, our results establish a unifying and mechanistic framework of neuronal cell-type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties.
  •  
3.
  •  
4.
  • Bakken, TE, et al. (författare)
  • Comparative cellular analysis of motor cortex in human, marmoset and mouse
  • 2021
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 598:7879, s. 111-
  • Tidskriftsartikel (refereegranskat)abstract
    • The primary motor cortex (M1) is essential for voluntary fine-motor control and is functionally conserved across mammals1. Here, using high-throughput transcriptomic and epigenomic profiling of more than 450,000 single nuclei in humans, marmoset monkeys and mice, we demonstrate a broadly conserved cellular makeup of this region, with similarities that mirror evolutionary distance and are consistent between the transcriptome and epigenome. The core conserved molecular identities of neuronal and non-neuronal cell types allow us to generate a cross-species consensus classification of cell types, and to infer conserved properties of cell types across species. Despite the overall conservation, however, many species-dependent specializations are apparent, including differences in cell-type proportions, gene expression, DNA methylation and chromatin state. Few cell-type marker genes are conserved across species, revealing a short list of candidate genes and regulatory mechanisms that are responsible for conserved features of homologous cell types, such as the GABAergic chandelier cells. This consensus transcriptomic classification allows us to use patch–seq (a combination of whole-cell patch-clamp recordings, RNA sequencing and morphological characterization) to identify corticospinal Betz cells from layer 5 in non-human primates and humans, and to characterize their highly specialized physiology and anatomy. These findings highlight the robust molecular underpinnings of cell-type diversity in M1 across mammals, and point to the genes and regulatory pathways responsible for the functional identity of cell types and their species-specific adaptations.
  •  
5.
  • Coleman, M., et al. (författare)
  • Hyaluronidase Impairs Neutrophil Function and Promotes Group B Streptococcus Invasion and Preterm Labor in Nonhuman Primates
  • 2021
  • Ingår i: Mbio. - 2150-7511. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Invasive bacterial infections during pregnancy are a major risk factor for preterm birth, stillbirth, and fetal injury. Group B streptococci (GBS) are Gram-positive bacteria that asymptomatically colonize the lower genital tract but infect the amniotic fluid and induce preterm birth or stillbirth. Experimental models that closely emulate human pregnancy are pivotal for the development of successful strategies to prevent these adverse pregnancy outcomes. Using a unique nonhuman primate model that mimics human pregnancy and informs temporal events surrounding amniotic cavity invasion and preterm labor, we show that the animals inoculated with hyaluronidase (HylB)-expressing GBS consistently exhibited microbial invasion into the amniotic cavity, fetal bacteremia, and preterm labor. Although delayed cytokine responses were observed at the maternal-fetal interface, increased prostaglandin and matrix metalloproteinase levels in these animals likely mediated pre term labor. HylB-proficient GBS dampened reactive oxygen species production and exhibited increased resistance to neutrophils compared to an isogenic mutant. Together, these findings demonstrate how a bacterial enzyme promotes GBS amniotic cavity invasion and preterm labor in a model that closely resembles human pregnancy. IMPORTANCE Group B streptococci (GBS) are bacteria that commonly reside in the female lower genital tract as asymptomatic members of the microbiota. However, during pregnancy, GBS can infect tissues at the maternal-fetal interface, leading to preterm birth, stillbirth, or fetal injury. Understanding how GBS evade host defenses during pregnancy is key to developing improved preventive therapies for these adverse outcomes. In this study, we used a unique nonhuman primate model to show that an enzyme secreted by GBS, hyaluronidase (HylB) promotes bacterial invasion into the amniotic cavity and fetus. Although delayed immune responses were seen at the maternal-fetal interface, animals infected with hyaluronidase-expressing GBS exhibited premature cervical ripening and preterm labor. These observations reveal that HylB is a crucial GBS virulence factor that promotes bacterial invasion and preterm labor in a pregnancy model that closely emulates human pregnancy. Therefore, hyaluronidase inhibitors may be useful in therapeutic strategies against ascending GBS infection.
  •  
6.
  •  
7.
  • Haas, Brian J., et al. (författare)
  • De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis
  • 2013
  • Ingår i: Nature Protocols. - : Springer Science and Business Media LLC. - 1754-2189 .- 1750-2799. ; 8:8, s. 1494-1512
  • Tidskriftsartikel (refereegranskat)abstract
    • De novo assembly of RNA-seq data enables researchers to study transcriptomes without the need for a genome sequence; this approach can be usefully applied, for instance, in research on 'non-model organisms' of ecological and evolutionary importance, cancer samples or the microbiome. In this protocol we describe the use of the Trinity platform for de novo transcriptome assembly from RNA-seq data in non-model organisms. We also present Trinity-supported companion utilities for downstream applications, including RSEM for transcript abundance estimation, R/Bioconductor packages for identifying differentially expressed transcripts across samples and approaches to identify protein-coding genes. In the procedure, we provide a workflow for genome-independent transcriptome analysis leveraging the Trinity platform. The software, documentation and demonstrations are freely available from http://trinityrnaseq.sourceforge.net. The run time of this protocol is highly dependent on the size and complexity of data to be analyzed. The example data set analyzed in the procedure detailed herein can be processed in less than 5 h.
  •  
8.
  • McCartney, S. A., et al. (författare)
  • Amniotic fluid interleukin 6 and interleukin 8 are superior predictors of fetal lung injury compared with maternal or fetal plasma cytokines or placental histopathology in a nonhuman primate model
  • 2021
  • Ingår i: American Journal of Obstetrics and Gynecology. - : Elsevier BV. - 0002-9378. ; 225:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Intra-amniotic infection or inflammation is common in early preterm birth and associated with substantial neonatal lung morbidity owing to fetal exposure to proinflammatory cytokines and infectious organisms. Amniotic fluid interleukin 8, a proinflammatory cytokine, was previously correlated with the development of neonatal bronchopulmonary dysplasia, but whether amniotic fluid cytokines or placental pathology more accurately predicts neonatal lung pathology and morbidity is unknown. We have used a pregnant nonhuman primate model of group B Streptococcus infection to study the pathogenesis of intra-amniotic infection, bacterial invasion of the amniotic cavity and fetus, and microbial-host interactions. In this nonhuman primate model, we have studied the pathogenesis of group B Streptococcus strains with differing potential for virulence, which has resulted in a spectrum of intra-amniotic infection and fetal lung injury that affords the opportunity to study the inflammatory predictors of fetal lung pathology and injury. OBJECTIVE: This study aimed to determine whether fetal lung injury is best predicted by placental histopathology or the cytokine response in amniotic fluid or maternal plasma. STUDY DESIGN: Chronically catheterized pregnant monkeys (Macaca nemestrina, pigtail macaque) at 116 to 125 days gestation (term at 172 days) received a choriodecidual inoculation of saline (n = 5), weakly hemolytic group B Streptococcus strain (n = 5, low virulence), or hyperhemolytic group B Streptococcus strain (n=5, high virulence). Adverse pregnancy outcomes were defined as either preterm labor, microbial invasion of the amniotic cavity, or development of the fetal inflammatory response syndrome. Amniotic fluid and maternal and fetal plasma samples were collected after inoculation, and proinflammatory cytokines (tumor necrosis factor alpha, interleukin beta, interleukin 6, interleukin 8) were measured by a multiplex assay. Cesarean delivery was performed at the time of preterm labor or within 1 week of inoculation. Fetal necropsy was performed at the time of delivery. Placental pathology was scored in a blinded fashion by a pediatric pathologist, and fetal lung injury was determined by a semiquantitative score from histopathology evaluating inflammatory infiltrate, necrosis, tissue thickening, or collapse scored by a veterinary pathologist. RESULTS: The principal findings in our study are as follows: (1) adverse pregnancy outcomes occurred more frequently in animals receiving hyperhemolytic group B Streptococcus (80% with preterm labor, 80% with fetal inflammatory response syndrome) than in animals receiving weakly hemolytic group B Streptococcus (40% with preterm labor, 20% with fetal inflammatory response syndrome) and in controls (0% preterm labor, 0% fetal inflammatory response syndrome); (2) despite differences in the rate of adverse pregnancy outcomes and fetal inflammatory response syndrome, fetal lung injury scores were similar between animals receiving the weakly hemolytic group B Streptococcus strains and animals receiving the hyperhemolytic group B Streptococcus strains; (3) fetal lung injury score was significantly correlated with peak amniotic fluid cytokines interleukin 6 and interleukin 8 but not tumor necrosis factor alpha or interleukin 1 beta; and (4) fetal lung scores were poorly correlated with maternal and fetal plasma cytokine levels and placental pathology. CONCLUSION: Amniotic fluid interleukin 6 and interleukin 8 levels were superior predictors of fetal lung injury than placental histopathology or maternal plasma cytokines. This evidence supports a role for amniocentesis in the prediction of neonatal lung morbidity owing to intraamniotic infection, which cannot be provided by cytokine analysis of maternal plasma or placental histopathology.
  •  
9.
  • Nene, Vishvanath, et al. (författare)
  • Genome sequence of Aedes aegypti, a major arbovirus vector.
  • 2007
  • Ingår i: Science (New York, N.Y.). - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 316:5832, s. 1718-23
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a draft sequence of the genome of Aedes aegypti, the primary vector for yellow fever and dengue fever, which at approximately 1376 million base pairs is about 5 times the size of the genome of the malaria vector Anopheles gambiae. Nearly 50% of the Ae. aegypti genome consists of transposable elements. These contribute to a factor of approximately 4 to 6 increase in average gene length and in sizes of intergenic regions relative to An. gambiae and Drosophila melanogaster. Nonetheless, chromosomal synteny is generally maintained among all three insects, although conservation of orthologous gene order is higher (by a factor of approximately 2) between the mosquito species than between either of them and the fruit fly. An increase in genes encoding odorant binding, cytochrome P450, and cuticle domains relative to An. gambiae suggests that members of these protein families underpin some of the biological differences between the two mosquito species.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy