SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Osipov T.) "

Sökning: WFRF:(Osipov T.)

  • Resultat 1-10 av 23
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Landén, Mikael, 1966, et al. (författare)
  • Brain aging in major depressive disorder: results from the ENIGMA major depressive disorder working group
  • 2021
  • Ingår i: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 26, s. 5124-5139
  • Tidskriftsartikel (refereegranskat)abstract
    • Major depressive disorder (MDD) is associated with an increased risk of brain atrophy, aging-related diseases, and mortality. We examined potential advanced brain aging in adult MDD patients, and whether this process is associated with clinical characteristics in a large multicenter international dataset. We performed a mega-analysis by pooling brain measures derived from T1-weighted MRI scans from 19 samples worldwide. Healthy brain aging was estimated by predicting chronological age (18–75 years) from 7 subcortical volumes, 34 cortical thickness and 34 surface area, lateral ventricles and total intracranial volume measures separately in 952 male and 1236 female controls from the ENIGMA MDD working group. The learned model coefficients were applied to 927 male controls and 986 depressed males, and 1199 female controls and 1689 depressed females to obtain independent unbiased brain-based age predictions. The difference between predicted “brain age” and chronological age was calculated to indicate brain-predicted age difference (brain-PAD). On average, MDD patients showed a higher brain-PAD of +1.08 (SE 0.22) years (Cohen’s d = 0.14, 95% CI: 0.08–0.20) compared with controls. However, this difference did not seem to be driven by specific clinical characteristics (recurrent status, remission status, antidepressant medication use, age of onset, or symptom severity). This highly powered collaborative effort showed subtle patterns of age-related structural brain abnormalities in MDD. Substantial within-group variance and overlap between groups were observed. Longitudinal studies of MDD and somatic health outcomes are needed to further assess the clinical value of these brain-PAD estimates. © 2020, The Author(s).
  •  
2.
  • Barillot, T., et al. (författare)
  • Correlation-Driven Transient Hole Dynamics Resolved in Space and Time in the Isopropanol Molecule
  • 2021
  • Ingår i: Physical Review X. - : American Physical Society. - 2160-3308. ; 11:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The possibility of suddenly ionized molecules undergoing extremely fast electron hole (or hole) dynamics prior to significant structural change was first recognized more than 20 years ago and termed charge migration. The accurate probing of ultrafast electron hole dynamics requires measurements that have both sufficient temporal resolution and can detect the localization of a specific hole within the molecule. We report an investigation of the dynamics of inner valence hole states in isopropanol where we use an x-ray pump-x-ray probe experiment, with site and state-specific probing of a transient hole state localized near the oxygen atom in the molecule, together with an ab initio theoretical treatment. We record the signature of transient hole dynamics and make the first tentative observation of dynamics driven by frustrated Auger-Meitner transitions. We verify that the effective hole lifetime is consistent with our theoretical prediction. This state-specific measurement paves the way to widespread application for observations of transient hole dynamics localized in space and time in molecules and thus to charge transfer phenomena that are fundamental in chemical and material physics.
  •  
3.
  • Berrah, N., et al. (författare)
  • Femtosecond-resolved observation of the fragmentation of buckminsterfullerene following X-ray multiphoton ionization
  • 2019
  • Ingår i: Nature Physics. - : Springer Science and Business Media LLC. - 1745-2473 .- 1745-2481. ; 15, s. 1279-1283
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray free-electron lasers have, over the past decade, opened up the possibility of understanding the ultrafast response of matter to intense X-ray pulses. In earlier research on atoms and small molecules, new aspects of this response were uncovered, such as rapid sequences of inner-shell photoionization and Auger ionization. Here, we studied a larger molecule, buckminsterfullerene (C60), exposed to 640eV X-rays, and examined the role of chemical effects, such as chemical bonds and charge transfer, on the fragmentation following multiple ionization of the molecule. To provide time resolution, we performed femtosecond-resolved X-ray pump/X-ray probe measurements, which were accompanied by advanced simulations. The simulations and experiment reveal that despite substantial ionization induced by the ultrashort (20fs) X-ray pump pulse, the fragmentation of C60 is considerably delayed. This work uncovers the persistence of the molecular structure of C60, which hinders fragmentation over a timescale of hundreds of femtoseconds. Furthermore, we demonstrate that a substantial fraction of the ejected fragments are neutral carbon atoms. These findings provide insights into X-ray free-electron laser-induced radiation damage in large molecules, including biomolecules.
  •  
4.
  • Sanchez-Gonzalez, A., et al. (författare)
  • Auger electron and photoabsorption spectra of glycine in the vicinity of the oxygen K-edge measured with an X-FEL
  • 2015
  • Ingår i: Journal of Physics B-Atomic Molecular and Optical Physics. - : IOP Publishing. - 0953-4075 .- 1361-6455. ; 48:23
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the first measurement of the near oxygen K-edge auger spectrum of the glycine molecule. Our work employed an x-ray free electron laser as the photon source operated with input photon energies tunable between 527 and 547 eV. Complete electron spectra were recorded at each photon energy in the tuning range, revealing resonant and non-resonant auger structures. Finally ab initio theoretical predictions are compared with the measured above the edge auger spectrum and an assignment of auger decay channels is performed.
  •  
5.
  • Farrell, J. P., et al. (författare)
  • Ultrafast X-ray probe of nucleobase photoprotection
  • 2012
  • Ingår i: Quantum Electronics and Laser Science Conference. - 9781467318396 ; , s. 6327153-
  • Konferensbidrag (refereegranskat)abstract
    • We will present first results of a UV-pump X-ray-probe study of the photoprotection mechanism of thymine. The experiment used element specific Auger spectroscopy and was carried out at the LCLS.
  •  
6.
  • Lutman, A. A., et al. (författare)
  • Polarization control in an X-ray free-electron laser
  • 2016
  • Ingår i: Nature Photonics. - : Springer Science and Business Media LLC. - 1749-4885 .- 1749-4893. ; 10:7, s. 468-472
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray free-electron lasers are unique sources of high-brightness coherent radiation. However, existing devices supply only linearly polarized light, precluding studies of chiral dynamics. A device called the Delta undulator has been installed at the Linac Coherent Light Source (LCLS) to provide tunable polarization. With a reverse tapered planar undulator line to pre-microbunch the beam and the novel technique of beam diverting, hundreds of microjoules of circularly polarized X-ray pulses are produced at 500-1,200 eV. These X-ray pulses are tens of femtoseconds long, have a degree of circular polarization of 0.98(+0.02)(-0.04) at 707 eV and may be scanned in energy. We also present a new two-colour X-ray pump-X-ray probe operating mode for the LCLS. Energy differences of Delta E/E = 2.4% are supported, and the second pulse can be adjusted to any elliptical polarization. In this mode, the pointing, timing, intensity and wavelength of the two pulses can be modified.
  •  
7.
  • Wolf, T. J. A., et al. (författare)
  • Probing molecular photoinduced dynamics by ultrafast soft x-rays
  • 2017
  • Ingår i: 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). 25-29 June 2017, Munich, Germany. - : IEEE. - 9781509067367 - 9781509067374
  • Konferensbidrag (refereegranskat)abstract
    • Summary form only given. Molecules selectively transform light energy from the sun into other forms of energy like heat, electricity, or chemical energy with high quantum efficiency. The energy conversion process is the result of a correlated motion of electrons and nuclei after photoexcitation, often under breakdown of the Born-Oppenheimer approximation. The element and site selectivity of x-rays allows observing molecular processes from a different point of view compared to ultrafast optical probes [1,2]. I will concentrate on time resolved x-ray absorption spectroscopy. The method provides high selectivity on the transient electronic structure of a molecule. Recently, we establishes this method in the soft x-ray domain for probing ππ* to nπ* transitions, a general and important process for molecular energy conversion. Fig. 1 shows a sketch of thymine, used in the experiment, with one of the oxygen 1s core orbitals and the π,n and π* valence orbitals. While valence orbitals are generally delocalized over the whole molecular body, the lone pair n orbital is essentially an oxygen 2p orbital. An x-ray induced transition from the oxygen 1s to the n orbital will result in a strong absorption maximum in the pre-edge region. We use this feature to probe the molecular dynamics after photoexcitation.
  •  
8.
  • Wolf, T.J.A., et al. (författare)
  • Probing ultrafast ππ*/nπ* internal conversion in organic chromophores via K-edge resonant absorption
  • 2017
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Many photoinduced processes including photosynthesis and human vision happen in organic molecules and involve coupled femtosecond dynamics of nuclei and electrons. Organic molecules with heteroatoms often possess an important excited-state relaxation channel from an optically allowed ππ* to a dark nπ* state. The ππ*/nπ* internal conversion is difficult to investigate, as most spectroscopic methods are not exclusively sensitive to changes in the excited-state electronic structure. Here, we report achieving the required sensitivity by exploiting the element and site specificity of near-edge soft X-ray absorption spectroscopy. As a hole forms in the n orbital during ππ*/nπ* internal conversion, the absorption spectrum at the heteroatom K-edge exhibits an additional resonance. We demonstrate the concept using the nucleobase thymine at the oxygen K-edge, and unambiguously show that ππ*/nπ* internal conversion takes place within (60 ± 30) fs. High-level-coupled cluster calculations confirm the method’s impressive electronic structure sensitivity for excited-state investigations.
  •  
9.
  • Bolognesi, P., et al. (författare)
  • A study of the dynamical energy flow in uracil
  • 2015
  • Ingår i: Journal of Physics, Conference Series. - : IOP Publishing. - 1742-6588 .- 1742-6596. ; 635
  • Tidskriftsartikel (refereegranskat)abstract
    • The time resolved photoionization of C 1s in uracil following excitation of the neutral molecule by 260 nm pulses has been studied at LCLS.
  •  
10.
  • Larsson, Mats, et al. (författare)
  • Double core-hole formation in small molecules at the LCLS free electron laser
  • 2013
  • Ingår i: Journal of Physics B. - : IOP Publishing. - 0953-4075 .- 1361-6455. ; 46:16, s. 164030-
  • Tidskriftsartikel (refereegranskat)abstract
    • We have investigated nonlinear processes in small molecules by x-ray photoelectron spectroscopy using the Linac Coherent Light Source free electron laser, and by simulations. The main focus of the experiments was the formation of the two-site double core-hole (tsDCH) states in the molecules CO2, N2O and N-2. These experiments are described in detail and the results are compared with simulations of the photoelectron spectra. The double core-hole states, and in particular the tsDCH states, have been predicted to be highly sensitive to the chemical environment. The theory behind this chemical sensitivity is validated by the experiments. Furthermore, our simulations of the relative integrated intensities of the peaks associated with the nonlinear processes show that this type of simulation, in combination with experimental data, provides a useful tool for estimating the duration of ultra-short x-ray pulses.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 23

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy