SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Osman Amr 1993) "

Sökning: WFRF:(Osman Amr 1993)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fadavi Roudsari, Anita, 1978, et al. (författare)
  • Three-wave mixing traveling-wave parametric amplifier with periodic variation of the circuit parameters
  • 2023
  • Ingår i: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 122:5
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the implementation of a near-quantum-limited, traveling-wave parametric amplifier that uses three-wave mixing (3WM). To favor amplification by 3WM, we use superconducting nonlinear asymmetric inductive element (SNAIL) loops, biased with a dc magnetic flux. In addition, we equip the device with dispersion engineering features to create a stopband at the second harmonic of the pump and suppress the propagation of the higher harmonics that otherwise degrade the amplification. With a chain of 440 SNAILs, the amplifier provides up to 20 dB gain and a 3-dB bandwidth of 1 GHz. The added noise by the amplifier is found to be less than one photon.
  •  
2.
  • Ali, Aamir, 1994, et al. (författare)
  • Engineering Symmetry-Selective Couplings of a Superconducting Artificial Molecule to Microwave Waveguides
  • 2022
  • Ingår i: Physical Review Letters. - 1079-7114 .- 0031-9007. ; 129:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Tailoring the decay rate of structured quantum emitters into their environment opens new avenues for nonlinear quantum optics, collective phenomena, and quantum communications. Here, we demonstrate a novel coupling scheme between an artificial molecule comprising two identical, strongly coupled transmon qubits and two microwave waveguides. In our scheme, the coupling is engineered so that transitions between states of the same (opposite) symmetry, with respect to the permutation operator, are predominantly coupled to one (the other) waveguide. The symmetry-based coupling selectivity, as quantified by the ratio of the coupling strengths, exceeds a factor of 30 for both waveguides in our device. In addition, we implement a Raman process activated by simultaneously driving both waveguides, and show that it can be used to coherently couple states of different symmetry in the single-excitation manifold of the molecule. Using that process, we implement frequency conversion across the waveguides, mediated by the molecule, with efficiency of about 95%. Finally, we show that this coupling arrangement makes it possible to straightforwardly generate spatially separated Bell states propagating across the waveguides. We envisage further applications to quantum thermodynamics, microwave photodetection, and photon-photon gates.
  •  
3.
  • Biznárová, Janka, 1995, et al. (författare)
  • Mitigation of interfacial dielectric loss in aluminum-on-silicon superconducting qubits
  • 2024
  • Ingår i: npj Quantum Information. - 2056-6387. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate aluminum-on-silicon planar transmon qubits with time-averaged T1 energy relaxation times of up to 270 μs, corresponding to Q = 5 million, and a highest observed value of 501 μs. Through materials analysis techniques and numerical simulations we investigate the dominant source of energy loss, and devise and demonstrate a strategy toward its mitigation. Growing aluminum films thicker than 300 nm reduces the presence of oxide, a known host of defects, near the substrate-metal interface, as confirmed by time-of-flight secondary ion mass spectrometry. A loss analysis of coplanar waveguide resonators shows that this results in a reduction of dielectric loss due to two-level system defects. The correlation between the enhanced performance of our devices and the film thickness is due to the aluminum growth in columnar structures of parallel grain boundaries: transmission electron microscopy shows larger grains in the thicker film, and consequently fewer grain boundaries containing oxide near the substrate-metal interface.
  •  
4.
  • Chen, Liangyu, 1994, et al. (författare)
  • Transmon qubit readout fidelity at the threshold for quantum error correction without a quantum-limited amplifier
  • 2023
  • Ingår i: npj Quantum Information. - : Springer Science and Business Media LLC. - 2056-6387. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • High-fidelity and rapid readout of a qubit state is key to quantum computing and communication, and it is a prerequisite for quantum error correction. We present a readout scheme for superconducting qubits that combines two microwave techniques: applying a shelving technique to the qubit that reduces the contribution of decay error during readout, and a two-tone excitation of the readout resonator to distinguish among qubit populations in higher energy levels. Using a machine-learning algorithm to post-process the two-tone measurement results further improves the qubit-state assignment fidelity. We perform single-shot frequency-multiplexed qubit readout, with a 140 ns readout time, and demonstrate 99.5% assignment fidelity for two-state readout and 96.9% for three-state readout–without using a quantum-limited amplifier.
  •  
5.
  • Grigoras, K., et al. (författare)
  • Qubit-Compatible Substrates With Superconducting Through-Silicon Vias
  • 2022
  • Ingår i: IEEE Transactions on Quantum Engineering. - 2689-1808. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • We fabricate and characterize superconducting through-silicon vias and electrodes suitable for superconducting quantum processors. We measure internal quality factors of a million for test resonators excited at single-photon levels, on chips with superconducting vias used to stitch ground planes on the front and back sides of the chips. This resonator performance is on par with the state of the art for silicon-based planar solutions, despite the presence of vias. Via stitching of ground planes is an important enabling technology for increasing the physical size of quantum processor chips, and is a first step toward more complex quantum devices with three-dimensional integration.
  •  
6.
  • Kosen, Sandoko, 1991, et al. (författare)
  • Building blocks of a flip-chip integrated superconducting quantum processor
  • 2022
  • Ingår i: Quantum Science and Technology. - : IOP Publishing. - 2058-9565. ; 7:3
  • Tidskriftsartikel (refereegranskat)abstract
    • We have integrated single and coupled superconducting transmon qubits into flip-chip modules. Each module consists of two chips-one quantum chip and one control chip-that are bump-bonded together. We demonstrate time-averaged coherence times exceeding 90 mu s, single-qubit gate fidelities exceeding 99.9%, and two-qubit gate fidelities above 98.6%. We also present device design methods and discuss the sensitivity of device parameters to variation in interchip spacing. Notably, the additional flip-chip fabrication steps do not degrade the qubit performance compared to our baseline state-of-the-art in single-chip, planar circuits. This integration technique can be extended to the realisation of quantum processors accommodating hundreds of qubits in one module as it offers adequate input/output wiring access to all qubits and couplers.
  •  
7.
  • Kudra, Marina, 1992, et al. (författare)
  • Robust Preparation of Wigner-Negative States with Optimized SNAP-Displacement Sequences
  • 2022
  • Ingår i: PRX Quantum. - : AMER PHYSICAL SOC. - 2691-3399. ; 3:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Hosting nonclassical states of light in three-dimensional microwave cavities has emerged as a promising paradigm for continuous-variable quantum information processing. Here we experimentally demonstrate high-fidelity generation of a range of Wigner-negative states useful for quantum computation, such as Schrodinger-cat states, binomial states, Gottesman-Kitaev-Preskill states, as well as cubic phase states. The latter states have been long sought after in quantum optics and have never been achieved experimentally before. We use a sequence of interleaved selective number-dependent arbitrary phase (SNAP) gates and displacements. We optimize the state preparation in two steps. First we use a gradient-descent algorithm to optimize the parameters of the SNAP and displacement gates. Then we optimize the envelope of the pulses implementing the SNAP gates. Our results show that this way of creating highly nonclassical states in a harmonic oscillator is robust to fluctuations of the system parameters such as the qubit frequency and the dispersive shift.
  •  
8.
  • Lolur, Phalgun, 1989, et al. (författare)
  • Reference-State Error Mitigation: A Strategy for High Accuracy Quantum Computation of Chemistry
  • 2023
  • Ingår i: Journal of Chemical Theory and Computation. - : American Chemical Society (ACS). - 1549-9626 .- 1549-9618. ; 19:3, s. 783-789
  • Tidskriftsartikel (refereegranskat)abstract
    • Decoherence and gate errors severely limit the capabilities of state-of-the-art quantum computers. This work introduces a strategy for reference-state error mitigation (REM) of quantum chemistry that can be straightforwardly implemented on current and near-term devices. REM can be applied alongside existing mitigation procedures, while requiring minimal postprocessing and only one or no additional measurements. The approach is agnostic to the underlying quantum mechanical ansatz and is designed for the variational quantum eigensolver. Up to two orders-of-magnitude improvement in the computational accuracy of ground state energies of small molecules (H2, HeH+, and LiH) is demonstrated on superconducting quantum hardware. Simulations of noisy circuits with a depth exceeding 1000 two-qubit gates are used to demonstrate the scalability of the method.
  •  
9.
  • Osman, Amr, 1993, et al. (författare)
  • Mitigation of frequency collisions in superconducting quantum processors
  • 2023
  • Ingår i: Physical Review Research. - 2643-1564. ; 5:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The reproducibility of qubit parameters is a challenge for scaling up superconducting quantum processors. Signal cross talk imposes constraints on the frequency separation between neighboring qubits. The frequency uncertainty of transmon qubits arising from the fabrication process is attributed to deviations in the Josephson junction area, tunnel barrier thickness, and the qubit shunt capacitor. We decrease the sensitivity to these variations by fabricating larger Josephson junctions and reduce the wafer-level standard deviation in resistance down to 2%. We characterize 32 identical transmon qubits and demonstrate the reproducibility of the qubit frequencies with a 40 MHz standard deviation (i.e., 1%) with qubit quality factors exceeding 2 million. We perform two-level-system (TLS) spectroscopy and observe no significant increase in the number of TLSs causing qubit relaxation. We further show by simulation that for our parametric-gate architecture, and accounting only for errors caused by the uncertainty of the qubit frequency, we can scale up to 100 qubits with an average of only three collisions between quantum-gate transition frequencies, assuming 2% cross talk and 99.9% target gate fidelity.
  •  
10.
  • Osman, Amr, 1993, et al. (författare)
  • Simplified Josephson-junction fabrication process for reproducibly high-performance superconducting qubits
  • 2021
  • Ingår i: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 118:6
  • Tidskriftsartikel (refereegranskat)abstract
    • We introduce a simplified fabrication technique for Josephson junctions and demonstrate superconducting Xmon qubits with T1 relaxation times averaging above 50 μs (Q > 1.5 × 1 0 6). Current shadow-evaporation techniques for aluminum-based Josephson junctions require a separate lithography step to deposit a patch that makes a galvanic, superconducting connection between the junction electrodes and the circuit wiring layer. The patch connection eliminates parasitic junctions, which otherwise contribute significantly to dielectric loss. In our patch-integrated cross-type junction technique, we use one lithography step and one vacuum cycle to evaporate both the junction electrodes and the patch. This eliminates a key bottleneck in manufacturing superconducting qubits by reducing the fabrication time and cost. In a study of more than 3600 junctions, we show an average resistance variation of 3.7% on a wafer that contains forty 0.5 × 0.5-cm2 chips, with junction areas ranging between 0.01 and 0.16 μm2. The average on-chip spread in resistance is 2.7%, with 20 chips varying between 1.4% and 2%. For the junction sizes used for transmon qubits, we deduce a wafer-level transition-frequency variation of 1.7%-2.5%. We show that 60%-70% of this variation is attributed to junction-area fluctuations, while the rest is caused by tunnel-junction inhomogeneity. Such high frequency predictability is a requirement for scaling-up the number of qubits in a quantum computer.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12
Typ av publikation
tidskriftsartikel (12)
Typ av innehåll
refereegranskat (12)
Författare/redaktör
Osman, Amr, 1993 (12)
Bylander, Jonas, 197 ... (11)
Biznárová, Janka, 19 ... (8)
Fadavi Roudsari, Ani ... (8)
Warren, Christopher, ... (7)
Tancredi, Giovanna, ... (7)
visa fler...
Frisk Kockum, Anton, ... (5)
Delsing, Per, 1959 (5)
Rommel, Marcus, 1987 (5)
Kosen, Sandoko, 1991 (5)
Perez Lozano, Daniel ... (4)
Krizan, Christian, 1 ... (4)
Fernández-Pendás, Jo ... (3)
Ahmed, Shahnawaz, 19 ... (3)
Scigliuzzo, Marco, 1 ... (3)
Shiri, Daryoush, 197 ... (3)
Abad, Tahereh, 1989 (2)
Johansson, Göran, 19 ... (2)
Strandberg, Ingrid, ... (2)
Gasparinetti, Simone ... (2)
Rahm, Martin, 1982 (2)
Barucha-Dobrautz, We ... (2)
Bengtsson, Andreas, ... (2)
Kudra, Marina, 1992 (2)
Caputo, Marco (2)
Chen, Liangyu, 1994 (2)
Li, Hangxi, 1994 (2)
Shumeiko, Vitaly, 19 ... (1)
Krantz, Philip, 1984 (1)
Malmberg, Per, 1974 (1)
Haviland, David B. (1)
Quijandria Diaz, Isa ... (1)
Grigoras, Kestutis (1)
Ali, Aamir, 1994 (1)
Castillo Moreno, Cla ... (1)
Sundelin, Simon, 199 ... (1)
Patel, Kowshik Erapp ... (1)
Borgani, Riccardo (1)
Tholén, Mats O. (1)
Scigliuzzo, Marco (1)
Yurgens, Avgust, 195 ... (1)
Ferrini, Giulia, 198 ... (1)
Wendin, Göran, 1942 (1)
Gu, Xiu, 1989 (1)
Svensson, Ida-Maria, ... (1)
Eichler, Christopher (1)
Rehnman, Emil, 1999 (1)
Chayanun, Lert, 1990 (1)
Lu, Yong (1)
Lienhard, Benjamin (1)
visa färre...
Lärosäte
Chalmers tekniska högskola (12)
Kungliga Tekniska Högskolan (1)
Språk
Engelska (12)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (12)
Teknik (8)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy