SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Oster Julien) "

Sökning: WFRF:(Oster Julien)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mihandoost, Sara, et al. (författare)
  • A comparative study of the performance of methods for f-wave extraction
  • 2022
  • Ingår i: Physiological Measurement. - : IOP Publishing. - 0967-3334 .- 1361-6579. ; 43:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective. This study proposes a novel technique for atrial fibrillatory waves (f-waves) extraction and investigates the performance of the proposed method comparing with different f-wave extraction methods. Approach. We propose a novel technique combining a periodic component analysis (PiCA) and echo state network (ESN) for f-waves extraction, denoted PiCA-ESN. PiCA-ESN benefits from the advantages of using both source separation and nonlinear adaptive filtering. PiCA-ESN is evaluated by comparing with other state-of-the-art approaches, which include template subtraction technique based on principal component analysis, spatiotemporal cancellation, nonlinear adaptive filtering using an echo state neural network, and a source separation technique based on PiCA. Quality assessment is performed on a recently published reference database including a large number of simulated ECG signals in atrial fibrillation (AF). The performance of the f-wave extraction methods is evaluated in terms of signal quality metrics (SNR, ΔSNR) and robustness of f-wave features. Main results. The proposed method offers the best signal quality performance, with a ΔSNR of approximately 22 dB across all 8 sets of the reference database, as well as the most robust extraction of f-wave features, with 75% of all estimates of dominant atrial frequency well below 1 Hz.
  •  
2.
  • Petrenas, Andrius, et al. (författare)
  • Electrocardiogram modeling during paroxysmal atrial fibrillation : Application to the detection of brief episodes
  • 2017
  • Ingår i: Physiological Measurement. - : IOP Publishing. - 0967-3334 .- 1361-6579. ; 38:11, s. 2058-2080
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: A model for simulating multi-lead ECG signals during paroxysmal atrial fibrillation (AF) is proposed. Significance: The model is of particular significance when evaluating detection performance in the presence of brief AF episodes, especially since annotated databases with such episodes are lacking. Approach: The proposed model accounts for important characteristics such as switching between sinus rhythm and AF, varying P-wave morphology, repetition rate of f-waves, presence of atrial premature beats, and various types of noise. Main results: Two expert cardiologists assessed the realism of simulated signals relative to real ECG signals, both in sinus rhythm and AF. The cardiologists identified the correct rhythm in all cases, and considered two-thirds of the simulated signals as realistic. The proposed model was also investigated by evaluating the performance of two AF detectors which explored either rhythm only or both rhythm and morphology. The results show that detection performance is strongly dependent on AF episode duration, and, consequently, demonstrate that the model can play a significant role in the investigation of detector properties.
  •  
3.
  • Zhuang, Xiahai, et al. (författare)
  • Evaluation of algorithms for Multi-Modality Whole Heart Segmentation : An open-access grand challenge.
  • 2019
  • Ingår i: Medical Image Analysis. - : Elsevier BV. - 1361-8415 .- 1361-8423. ; 58
  • Tidskriftsartikel (refereegranskat)abstract
    • Knowledge of whole heart anatomy is a prerequisite for many clinical applications. Whole heart segmentation (WHS), which delineates substructures of the heart, can be very valuable for modeling and analysis of the anatomy and functions of the heart. However, automating this segmentation can be challenging due to the large variation of the heart shape, and different image qualities of the clinical data. To achieve this goal, an initial set of training data is generally needed for constructing priors or for training. Furthermore, it is difficult to perform comparisons between different methods, largely due to differences in the datasets and evaluation metrics used. This manuscript presents the methodologies and evaluation results for the WHS algorithms selected from the submissions to the Multi-Modality Whole Heart Segmentation (MM-WHS) challenge, in conjunction with MICCAI 2017. The challenge provided 120 three-dimensional cardiac images covering the whole heart, including 60 CT and 60 MRI volumes, all acquired in clinical environments with manual delineation. Ten algorithms for CT data and eleven algorithms for MRI data, submitted from twelve groups, have been evaluated. The results showed that the performance of CT WHS was generally better than that of MRI WHS. The segmentation of the substructures for different categories of patients could present different levels of challenge due to the difference in imaging and variations of heart shapes. The deep learning (DL)-based methods demonstrated great potential, though several of them reported poor results in the blinded evaluation. Their performance could vary greatly across different network structures and training strategies. The conventional algorithms, mainly based on multi-atlas segmentation, demonstrated good performance, though the accuracy and computational efficiency could be limited. The challenge, including provision of the annotated training data and the blinded evaluation for submitted algorithms on the test data, continues as an ongoing benchmarking resource via its homepage (www.sdspeople.fudan.edu.cn/zhuangxiahai/0/mmwhs/).
  •  
4.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy