SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Oulehle F.) "

Sökning: WFRF:(Oulehle F.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Björnerås, C., et al. (författare)
  • Widespread Increases in Iron Concentration in European and North American Freshwaters
  • 2017
  • Ingår i: Global Biogeochemical Cycles. - 0886-6236 .- 1944-9224. ; 31:10, s. 1488-1500
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent reports of increasing iron (Fe) concentrations in freshwaters are of concern, given the fundamental role of Fe in biogeochemical processes. Still, little is known about the frequency and geographical distribution of Fe trends or about the underlying drivers. We analyzed temporal trends of Fe concentrations across 340 water bodies distributed over 10 countries in northern Europe and North America in order to gain a clearer understanding of where, to what extent, and why Fe concentrations are on the rise. We found that Fe concentrations have significantly increased in 28% of sites, and decreased in 4%, with most positive trends located in northern Europe. Regions with rising Fe concentrations tend to coincide with those with organic carbon (OC) increases. Fe and OC increases may not be directly mechanistically linked, but may nevertheless be responding to common regional-scale drivers such as declining sulfur deposition or hydrological changes. A role of hydrological factors was supported by covarying trends in Fe and dissolved silica, as these elements tend to stem from similar soil depths. A positive relationship between Fe increases and conifer cover suggests that changing land use and expanded forestry could have contributed to enhanced Fe export, although increases were also observed in nonforested areas. We conclude that the phenomenon of increasing Fe concentrations is widespread, especially in northern Europe, with potentially significant implications for wider ecosystem biogeochemistry, and for the current browning of freshwaters.
  •  
2.
  • Moldan, Filip, et al. (författare)
  • Positive response of soil microbes to long-term nitrogen input in spruce forest: Results from Gårdsjön whole-catchment N-addition experiment.
  • 2020
  • Ingår i: Soil Biology and Biochemistry. - : Elsevier BV. - 0038-0717 .- 1879-3428. ; 143
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic nitrogen (N) deposition from anthropogenic emissions alter N cycling of forests in Europe and in other impacted areas. It disrupts plant/microbe interactions in originally N-poor systems, based on a symbiosis of plants with ectomycorrhizal fungi (ECM). ECM fungi that are capable of efficient nutrient mining from complex organics and their long-distance transport play a key role in controlling soil N mineralization and immobilization, and eventual nitrate (NO3−) leaching. Current meta-analyses highlight the importance of ECM biomass in securing the large soil N pool. At the same time, they point to the adverse effect of long-term N input on ECM fungi. The functioning of N-poor and N-overloaded forests is well understood, while the transient stages are much less explored. Therefore, we focused on the spruce-forest dominated catchment at Gårdsjön (Sweden) that received N addition of 40 kg N ha−1yr−1 over 24 years (a cumulative N input of >1200 kg N ha−1) but still loses via runoff only <20% of annual N input (deposition + addition) as NO3−. We found that, compared to the control, the N-addition catchment had a much larger soil microbial biomass. The N addition did not change the fungi/bacteria ratio, but a larger share of the bacterial community was made up of copiotrophs. Furthermore, fungal community composition shifted to more nitrophilic ECM fungi (contact and short exploration type ECM species) and saprotrophs. Such a restructured community has been more active, possessed a higher specific respiration rate, enhanced organic P and C mining through enzymatic production and provided faster net N mineralization and nitrification. These may be early indications of alleviation of N limitation of the system. We observed no signs of soil acidification related to N additions. The larger, structurally and functionally adapted soil microbial community still provides an efficient sink for the added N in the soil and is likely to be one of the explanations for low NO3− leaching that have stabilized in the last decade. Our results suggest that a microbial community can contribute to effective soil N retention in spite of the partial relative retreat (20–30%) of nitrophobic ECM fungi with large external mycelia, provided the fungal biomass remains high because of replacement by other ECM and saprotrophic fungi. Furthermore, we assume that N retention of similar C-rich boreal forests (organic soil molar C/N ~35) is not necessarily threatened by a large cumulative N dose provided N enters at a moderate rate, does not cause acidification and the soil microbial community has time to adapt through structural and functional changes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy