SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Oyarce Alejandro) "

Sökning: WFRF:(Oyarce Alejandro)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Darab, Mandi, et al. (författare)
  • The Influence of Catalyst Layer Thickness on the Performance and Degradation of PEM Fuel Cell Cathodes with Constant Catalyst Loading
  • 2017
  • Ingår i: Electrochimica Acta. - : PERGAMON-ELSEVIER SCIENCE LTD. - 0013-4686 .- 1873-3859. ; 232, s. 505-516
  • Tidskriftsartikel (refereegranskat)abstract
    • Three catalytic layers containing Pt nanoparticles supported on high surface area carbon of different Pt loading but with the same total amount of platinum and therefore of different thickness were employed as cathode catalytic layers (CCLs) in a PEM fuel cell. The layers were subjected to a degradation protocol with an upper potential limit of 1.5 V. Upon exposure to the degradation protocol particle size increased, the electrochemical areas (ECAs) of the catalysts decreased, the catalytic layers became thinner, and the average pore size decreased, indicating both carbon and Pt corrosion. The relative decrease in the ECA was approximately the same for all three layers and was therefore approximately independent of CCL thickness. For all samples the reaction order with respect to oxygen was one half and the samples showed doubling of the slope of the potential vs. log current curve (dEld logi) at high current densities. This indicates that kinetics control the potential at low currents and kinetics and proton migration (ohmic drops in the catalytic layer) at high. However, the degradation protocol also introduced limitations due to oxygen diffusion in the agglomerates. This led to a quadrupling of the dEld logi-slope in 13% oxygen in the samples with the highest catalyst area per volume. For the sample with the lowest catalyst area per volume this slope increased by a factor of six in 13% oxygen, indicating that the local current density exceeded that required for the Tafel slope of the oxygen-reduction reaction (ORR) to double.
  •  
2.
  • Gomez, Yasna Acevedo, et al. (författare)
  • Ammonia contamination of a proton exchange membrane fuel cell
  • 2018
  • Ingår i: Journal of the Electrochemical Society. - : Electrochemical Society. - 0013-4651 .- 1945-7111. ; 165:3, s. F189-F197
  • Tidskriftsartikel (refereegranskat)abstract
    • Reformate hydrogen from biogas is an attractive fuel alternative for energy conversion in PEM fuel cells. However, in the reformate traces of ammonia may be found, e.g. if the biogas is produced from agricultural resources. In this investigation the effect of ammonia in the fuel gas, on each part of the fuel cell, is studied by cyclic voltammetry, electrochemical impedance spectroscopy (EIS), symmetrical hydrogen cell (H2|H2)- and real fuel cell operation. A considerable degradation in performance is observed by introducing 200 ppm ammonia. The results show that ammonia not only affects the polymer electrolyte membrane but also the oxygen reduction reaction (ORR) and catalyst ionomer in both electrodes, whereas the hydrogen oxidation reaction (HOR) is the worst affected. In the short-term, the performance is reversible if running the cell on neat hydrogen after ammonia exposure, but this does not apply for long-term exposure. A mitigation method with air bleed is tested but gives no improvement of the performance.
  •  
3.
  • Oyarce, Alejandro, et al. (författare)
  • Comparing shut-down strategies for proton exchange membrane fuel cells
  • 2014
  • Ingår i: Journal of Power Sources. - : Elsevier BV. - 0378-7753 .- 1873-2755. ; 254, s. 232-240
  • Tidskriftsartikel (refereegranskat)abstract
    • Application of system strategies for mitigating carbon corrosion of the catalyst support in proton exchange fuel cells (PEMFCs) is a requirement for PEMFC systems, especially in the case of systems for transport application undergoing thousands of start-ups and shut-downs (SU/SD) during its lifetime. This study compares several of the most common shut-down strategies for 1100 cycles SU/SD cycles at 70 C and 80% RH using commercially available fuel cell components. Each cycle simulates a prolonged shut-down, i.e. finishing each cycle with air filled anode and cathode. Furthermore, all start-ups are unprotected, i.e. introducing the H2 rich gas into an air filled anode. Finally, each cycle also includes normal fuel cell operation at 0.5 A cm-2 using synthetic reformate/air. H2 purge of the cathode and O2 consumption using a load were found to be the most effective strategies. The degradation rate using the H2 purge strategy was 23 μV cycle-1 at 0.86 A cm-2 using H 2 and air at the anode and cathode, respectively. This degradation rate may be regarded as a generally low value, especially considering that this value also includes the degradation rate caused by unprotected start-ups.
  •  
4.
  • Oyarce, Alejandro, et al. (författare)
  • Direct sorbitol proton exchange membrane fuel cell using moderate catalyst loadings
  • 2014
  • Ingår i: Electrochimica Acta. - : Elsevier BV. - 0013-4686 .- 1873-3859. ; 116, s. 379-387
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent progress in biomass hydrolysis has made it interesting to study the use of sorbitol for electricity generation. In this study, sorbitol and glucose are used as fuels in proton exchange membrane fuel cells having 0.9 mg cm(-2) PtRu/C at the anode and 0.3 mg cm(-2) Pt/C at the cathode. The sorbitol oxidation was found to have slower kinetics than glucose oxidation. However, at low temperatures the direct sorbitol fuel cell shows higher performance than the direct glucose fuel cell, attributed to a lower degree of catalyst poisoning. The performance of both fuel cells is considerably improved at higher temperatures. High temperatures lower the poisoning, allowing the direct glucose fuel cell to reach a higher performance than the direct sorbitol fuel cell. The mass specific peak power densities of the direct sorbitol and direct glucose fuel cells at 65 degrees C was 3.2 mW Mg-catalyst(-1) and 3.5 mW Mg-catalyst(-1), respectively. Both of these values are one order of magnitude larger than mass specific peak power densities of earlier reported direct glucose fuel cells using proton exchange membranes. Furthermore, both the fuel cells showed a considerably decrease in performance with time, which is partially attributed to sorbitol and glucose crossover poisoning the Pt/C cathode.
  •  
5.
  • Oyarce, Alejandro, 1977- (författare)
  • Electrode degradation in proton exchange membrane fuel cells
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The topic of this thesis is the degradation of fuel cell electrodes in proton exchange membrane fuel cells (PEMFCs). In particular, the degradation associated with localized fuel starvation, which is often encountered during start-ups and shut-downs (SUs/SDs) of PEMFCs. At SU/SD, O2 and H2 usually coexist in the anode compartment. This situation forces the opposite electrode, i.e. the cathode, to very high potentials, resulting in the corrosion of the carbon supporting the catalyst, referred to as carbon corrosion. The aim of this thesis has been to develop methods, materials and strategies to address the issues associated to carbon corrosion in PEMFC.The extent of catalyst degradation is commonly evaluated determining the electrochemically active surface area (ECSA) of fuel cell electrode. Therefore, it was considered important to study the effect of RH, temperature and type of accelerated degradation test (ADT) on the ECSA. Low RH decreases the ECSA of the electrode, attributed to re-structuring the ionomer and loss of contact with the catalyst.In the search for more durable supports, we evaluated different accelerated degradation tests (ADTs) for carbon corrosion. Potentiostatic holds at 1.2 V vs. RHE were found to be too mild. Potentiostatic holds at 1.4 V vs. RHE were found to induce a large degree of reversibility, also attributed to ionomer re-structuring. Triangle-wave potential cycling was found to irreversibly degrade the electrode within a reasonable amount of time, closely simulating SU/SD conditions.Corrosion of carbon-based supports not only degrades the catalyst by lowering the ECSA, but also has a profound effect on the electrode morphology. Decreased electrode porosity, increased agglomerate size and ionomer enrichment all contribute to the degradation of the mass-transport properties of the cathode. Graphitized carbon fibers were found to be 5 times more corrosion resistant than conventional carbons, primarily attributed to their lower surface area. Furthermore, fibers were found to better maintain the integrity of the electrode morphology, generally showing less degradation of the mass-transport losses. Different system strategies for shut-down were evaluated. Not doing anything to the fuel cell during shut-downs is detrimental for the fuel cell. O2 consumption with a load and H2 purge of the cathode were found to give around 100 times lower degradation rates compared to not doing anything and almost 10 times lower degradation rate than a simple air purge of the anode. Finally, in-situ measurements of contact resistance showed that the contact resistance between GDL and BPP is highly dynamic and changes with operating conditions.
  •  
6.
  • Oyarce, Alejandro, et al. (författare)
  • In-situ Measurements of Contact Resistance and In-situ Durability studies of Steels and Coatings to be used as Bipolar Plates in PEMFCs
  • 2009
  • Ingår i: ECS Transactions. - : The Electrochemical Society. - 1938-5862 .- 1938-6737. ; 25:1, s. 1791-1801
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, a fast, low cost and reliable methodology for bipolar plate material screening and testing is presented. Ex-situ measurements of contact resistance are used as a screening tool, while in-situ measurements such as: fuel cell performance, in-situ contact resistance, high frequency impedance spectroscopy, together with post analysis of stainless steel surfaces, MEAs and fuel cell effluent water evaluates the real performance of the most promising stainless steels and coatings, providing reliable data for future fuel cell stack test.
  •  
7.
  • Oyarce, Alejandro, et al. (författare)
  • Operating conditions affecting the contact resistance of bi-polar plates in proton exchange membrane fuel cells
  • 2013
  • Ingår i: Journal of Power Sources. - : Elsevier BV. - 0378-7753 .- 1873-2755. ; 231, s. 246-255
  • Tidskriftsartikel (refereegranskat)abstract
    • Both ex-situ and in-situ measurements of contact resistance between gas diffusion layer (GDL) and bi-polar plate (BPP) were carried out using the same fuel cell hardware. Each BPP sample was submitted to ex-situ testing at room temperature, ex-situ testing in simulated fuel cell environment and in-situ testing, isolating the effect of specific operating conditions on the contact resistance. Increasing cell temperatures and relative humidity (RH) of the gases lowered the contact resistance. However, the presence of liquid water, measured as an increase in pressure drop over the cathode, affected the contact resistance negatively. High current density operation raises the temperature of the cell, but simultaneously increases the water content at the cathode, causing an increase of the contact resistance. In the case of uncoated steel 316L and gold-coated steel 316L, high current density operation for an extended period of time also caused a progressive deterioration of the contact resistance, which without this in-situ measurement could have been mistaken for other ohmic losses, e.g. increased membrane resistance due to metal ion poisoning.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy