SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Páldy A.) "

Sökning: WFRF:(Páldy A.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sikoparija, B., et al. (författare)
  • Spatial and temporal variations in airborne Ambrosia pollen in Europe
  • 2017
  • Ingår i: Aerobiologia. - : Springer Science and Business Media LLC. - 0393-5965 .- 1573-3025. ; 33, s. 181-189
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2016, The Author(s). The European Commission Cooperation in Science and Technology (COST) Action FA1203 “SMARTER” aims to make recommendations for the sustainable management of Ambrosia across Europe and for monitoring its efficiency and cost-effectiveness. The goal of the present study is to provide a baseline for spatial and temporal variations in airborne Ambrosia pollen in Europe that can be used for the management and evaluation of this noxious plant. The study covers the full range of Ambrosia artemisiifolia L. distribution over Europe (39°N–60°N; 2°W–45°E). Airborne Ambrosia pollen data for the principal flowering period of Ambrosia (August–September) recorded during a 10-year period (2004–2013) were obtained from 242 monitoring sites. The mean sum of daily average airborne Ambrosia pollen and the number of days that Ambrosia pollen was recorded in the air were analysed. The mean and standard deviation (SD) were calculated regardless of the number of years included in the study period, while trends are based on those time series with 8 or more years of data. Trends were considered significant at p<0.05. There were few significant trends in the magnitude and frequency of atmospheric Ambrosia pollen (only 8% for the mean sum of daily average Ambrosia pollen concentrations and 14% for the mean number of days Ambrosia pollen were recorded in the air). The direction of any trends varied locally and reflected changes in sources of the pollen, either in size or in distance from the monitoring station. Pollen monitoring is important for providing an early warning of the expansion of this invasive and noxious plant.
  •  
2.
  • Baccini, M., et al. (författare)
  • Impact of heat on mortality in 15 european cities : attributable deaths under different weather scenarios
  • 2011
  • Ingår i: Journal of Epidemiology and Community Health. - : BMJ Publishing Group Ltd. - 0143-005X .- 1470-2738. ; 65:1, s. 64-70
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: High ambient summer temperatures have been shown to influence daily mortality in cities across Europe. Quantification of the population mortality burden attributable to heat is crucial to the development of adaptive approaches. The impact of summer heat on mortality for 15 European cities during the 1990s was evaluated, under hypothetical temperature scenarios warmer and cooler than the mean and under future scenarios derived from the Intergovernmental Panel on Climate Change Special Report on Emission Scenarios (SRES).Methods: A Monte Carlo approach was used to estimate the number of deaths attributable to heat for each city. These estimates rely on the results of a Bayesian random-effects meta-analysis that combines city-specific heat-mortality functions.Results: The number of heat-attributable deaths per summer ranged from 0 in Dublin to 423 in Paris. The mean attributable fraction of deaths was around 2%. The highest impact was in three Mediterranean cities (Barcelona, Rome and Valencia) and in two continental cities (Paris and Budapest). The largest impact was on persons over 75 years; however, in some cities, important proportions of heat-attributable deaths were also found for younger adults. Heat-attributable deaths markedly increased under warming scenarios. The impact under SRES scenarios was slightly lower or comparable to the impact during the observed hottest year.Conclusions: Current high summer ambient temperatures have an important impact on European population health. This impact is expected to increase in the future, according to the projected increase of mean ambient temperatures and frequency, intensity and duration of heat waves.
  •  
3.
  • Grewling, L., et al. (författare)
  • Variation in Artemisia pollen seasons in Central and Eastern Europe
  • 2012
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier BV. - 1873-2240 .- 0168-1923. ; 160, s. 48-59
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper aims to address some gaps in current knowledge by studying temporal and spatial variations in Artemisia pollen counts (2000-2009) at 13 sites located in different biogeographical areas of Central and Eastern Europe. Analysis showed that start dates of Artemisia pollen seasons are greatly dependent on temperature during June and July, with hot summer temperatures having a tendency to delay summer flowering. However, this relationship is not linear and the rate at which seasons become later increases when mean minimum June-July temperatures reach a threshold of about 13 degrees C. No explanation for variations in pollen season intensity could be found. The geographical location or amount of urbanisation did not influence, either positively or negatively, the seasonal pollen index. Second peaks in Artemisia pollen seasons can be described as the pollen seasons of late flowering Artemisia species, and mainly occurred in the geographical area south of the Carpathian Mountains. These second peaks can significantly influence the seasonal pollen index, contributing over 50% to the season's total Artemisia pollen recorded at one site. (C) 2012 Elsevier B.V. All rights reserved.
  •  
4.
  • Michelozzi, Paola, et al. (författare)
  • High temperature and hospitalizations for cardiovascular and respiratory causes in 12 European cities.
  • 2009
  • Ingår i: American journal of respiratory and critical care medicine. - 1535-4970. ; 179:5, s. 383-9
  • Tidskriftsartikel (refereegranskat)abstract
    • RATIONALE: Episode analyses of heat waves have documented a comparatively higher impact on mortality than on morbidity (hospital admissions) in European cities. The evidence from daily time series studies is scarce and inconsistent. OBJECTIVES: To evaluate the impact of high environmental temperatures on hospital admissions during April to September in 12 European cities participating in the Assessment and Prevention of Acute Health Effects of Weather Conditions in Europe (PHEWE) project. METHODS: For each city, time series analysis was used to model the relationship between maximum apparent temperature (lag 0-3 days) and daily hospital admissions for cardiovascular, cerebrovascular, and respiratory causes by age (all ages, 65-74 age group, and 75+ age group), and the city-specific estimates were pooled for two geographical groupings of cities. MEASUREMENTS AND MAIN RESULTS: For respiratory admissions, there was a positive association that was heterogeneous between cities. For a 1 degrees C increase in maximum apparent temperature above a threshold, respiratory admissions increased by +4.5% (95% confidence interval, 1.9-7.3) and +3.1% (95% confidence interval, 0.8-5.5) in the 75+ age group in Mediterranean and North-Continental cities, respectively. In contrast, the association between temperature and cardiovascular and cerebrovascular admissions tended to be negative and did not reach statistical significance. CONCLUSIONS: High temperatures have a specific impact on respiratory admissions, particularly in the elderly population, but the underlying mechanisms are poorly understood. Why high temperature increases cardiovascular mortality but not cardiovascular admissions is also unclear. The impact of extreme heat events on respiratory admissions is expected to increase in European cities as a result of global warming and progressive population aging.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy