SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Péroux C.) "

Sökning: WFRF:(Péroux C.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Klitsch, Anne, et al. (författare)
  • Almacal – VI. Molecular gas mass density across cosmic time via a blind search for intervening molecular absorbers
  • 2019
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 490:1, s. 1220-1230
  • Tidskriftsartikel (refereegranskat)abstract
    • We are just starting to understand the physical processes driving the dramatic change in cosmic star formation rate between z ∼ 2 and the present day. A quantity directly linked to star formation is the molecular gas density, which should be measured through independent methods to explore variations due to cosmic variance and systematic uncertainties. We use intervening CO absorption lines in the spectra of mm-bright background sources to provide a census of the molecular gas mass density of the Universe. The data used in this work are taken from ALMACAL, a wide and deep survey utilizing the ALMA calibrator archive. While we report multiple Galactic absorption lines and one intrinsic absorber, no extragalactic intervening molecular absorbers are detected. However, due to the large redshift path surveyed (z = 182), we provide constraints on the molecular column density distribution function beyond z ∼ 0. In addition, we probe column densities of N(H2) > 1016 atoms cm−2, 5 orders of magnitude lower than in previous studies. We use the cosmological hydrodynamical simulation IllustrisTNG to show that our upper limits of ρ(H2) 108.3 M Mpc−3 at 0 < z ≤ 1.7 already provide new constraints on current theoretical predictions of the cold molecular phase of the gas. These results are in agreement with recent CO emission-line surveys and are complementary to those studies. The combined constraints indicate that the present decrease of the cosmic star formation rate history is consistent with an increasing depletion of molecular gas in galaxies compared to z ∼ 2.
  •  
2.
  • Péroux, C., et al. (författare)
  • MUSE-ALMA haloes VII : survey science goals & design, data processing and final catalogues
  • 2022
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 516:4, s. 5618-5636
  • Tidskriftsartikel (refereegranskat)abstract
    • The gas cycling in the circumgalactic regions of galaxies is known to be multi-phase. The MUSE–ALMA Haloes survey gathers a large multi-wavelength observational sample of absorption and emission data with the goal to significantly advance our understanding of the physical properties of such CGM gas. A key component of the MUSE–ALMA Haloes survey is the multi-facility observational campaign conducted with VLT/MUSE, ALMA, and HST. MUSE–ALMA Haloes targets comprise 19 VLT/MUSE IFS quasar fields, including 32 zabs <0.85 strong absorbers with measured N(H I) ≥1018 cm−2 from UV-spectroscopy. We additionally use a new complementary HST medium program to characterize the stellar content of the galaxies through a 40-orbit three-band UVIS and IR WFC3 imaging. Beyond the absorber-selected targets, we detect 3658 sources all fields combined, including 703 objects with spectroscopic redshifts. This galaxy-selected sample constitutes the main focus of the current paper. We have secured millimeter ALMA observations of some of the fields to probe the molecular gas properties of these objects. Here, we present the overall survey science goals, target selection, observational strategy, data processing and source identification of the full sample. Furthermore, we provide catalogues of magnitude measurements for all objects detected in VLT/MUSE, ALMA, and HST broad-band images and associated spectroscopic redshifts derived from VLT/MUSE observations. Together, this data set provides robust characterization of the neutral atomic gas, molecular gas and stars in the same objects resulting in the baryon census of condensed matter in complex galaxy structures.
  •  
3.
  • Weng, S., et al. (författare)
  • MUSE-ALMA Haloes – VIII. Statistical study of circumgalactic medium gas
  • 2023
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 519:1, s. 931-947
  • Tidskriftsartikel (refereegranskat)abstract
    • The distribution of gas and metals in the circumgalactic medium (CGM) plays a critical role in how galaxies evolve. The MUSE-ALMA Haloes survey combines MUSE, ALMA, and HST observations to constrain the properties of the multiphase gas in the CGM and the galaxies associated with the gas probed in absorption. In this paper, we analyse the properties of galaxies associated with 32 strong HI Ly-α absorbers at redshift 0.2 ≲ z ≲ 1.4. We detect 79 galaxies within ±500 kms−1 of the absorbers in our 19 MUSE fields. These associated galaxies are found at physical distances from 5.7 kpc and reach star formation rates as low as 0.1 M⊙ yr−1. The significant number of associated galaxies allows us to map their physical distribution on the Δv and b plane. Building on previous studies, we examine the physical and nebular properties of these associated galaxies and find the following: (i) 27/32 absorbers have galaxy counterparts and more than 50 per cent of the absorbers have two or more associated galaxies, (ii) the HIHI column density of absorbers is anticorrelated with the impact parameter (scaled by virial radius) of the nearest galaxy as expected from simulations, (iii) the metallicity of associated galaxies is typically larger than the absorber metallicity, which decreases at larger impact parameters. It becomes clear that while strong HIHI absorbers are typically associated with more than a single galaxy, we can use them to statistically map the gas and metal distribution in the CGM.
  •  
4.
  • Augustin, Ramona, et al. (författare)
  • MUSE-ALMA Haloes X : the stellar masses of gas-rich absorbing galaxies
  • 2024
  • Ingår i: Monthly notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 528:4, s. 6159-6166
  • Tidskriftsartikel (refereegranskat)abstract
    • The physical processes by which gas is accreted onto galaxies, transformed into stars, and then expelled from galaxies are of paramount importance to galaxy evolution studies. Observationally constraining each of these baryonic components in the same system, however, is challenging. Furthermore, simulations indicate that the stellar mass of galaxies is a key factor influencing CGM properties. Indeed, absorption lines detected against background quasars offer the most compelling way to study the cold gas in the circumgalactic medium (CGM). The MUSE-ALMA Haloes survey is composed of quasar fields covered with VLT/MUSE observations, comprising 32 H I absorbers at 0.2 < z < 1.4 and 79 associated galaxies, with available or upcoming molecular gas measurements from ALMA. We use a dedicated 40-orbit HST UVIS and IR WFC3 broad-band imaging campaign to characterize the stellar content of these galaxies. By fitting their spectral energy distribution, we establish they probe a wide range of stellar masses: 8.1 < log (M∗/M⊙) < 12.4. Given their star formation rates, most of these objects lie on the main sequence of galaxies. We also confirm a previously reported anticorrelation between the stellar masses and CGM hydrogen column density N (H I), indicating an evolutionary trend where higher mass galaxies are less likely to host large amounts of H I gas in their immediate vicinity up to 120 kpc. Together with other studies from the MUSE-ALMA Haloes survey, these data provide stellar masses of absorber hosts, a key component of galaxy formation and evolution, and observational constraints on the relation between galaxies and their surrounding medium. 
  •  
5.
  • Konstantopoulou, Christina, et al. (författare)
  • Dust depletion of metals from local to distant galaxies : II. Cosmic dust-to-metal ratio and dust composition
  • 2024
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 681
  • Tidskriftsartikel (refereegranskat)abstract
    • The evolution of cosmic dust content and the cycle between metals and dust in the interstellar medium (ISM) play a fundamental role in galaxy evolution. The chemical enrichment of the Universe can be traced through the evolution of the dust-to-metal ratio (DTM) and the dust-to-gas ratio (DTG) with metallicity. The physical processes through which dust is created and eventually destroyed remain to be elucidated. We use a novel method to determine mass estimates of the DTM, DTG, and dust composition in terms of the fraction of dust mass contributed by element X ( fMX ) based on our previous measurements of the depletion of metals in different environments (the Milky Way, the Magellanic Clouds, and damped Lyman-α absorbers (DLAs) towards quasars (QSOs) and towards gamma-ray bursts (GRBs)), which were calculated from the relative abundances of metals in the ISM through absorption-line spectroscopy column densities observed mainly from VLT/UVES and X-shooter, and HST/STIS. We also derive the dust extinction from the estimated dust depletion (AV,depl) for GRB-DLAs, the Magellanic Clouds, and the Milky Way, and compare it with the AV estimated from extinction (AV,ext). We find that the DTM and DTG ratios increase with metallicity and with the dust tracer [Zn/Fe]. This suggests that grain growth in the ISM is the dominant process of dust production, at least in the metallicity range (-2 ≤ [M/H]tot . 0.5) and redshift range (0.6 < z < 6.3) that we are studying. The increasing trend in the DTM and DTG with metallicity is in good agreement with a dust production and evolution hydrodynamical model. Our data suggest that the stellar dust yield is much lower (about 1%) than the metal yield and thus that the overall amount of dust in the warm neutral medium that is produced by stars is much lower than previously estimated. The global neutral gas metallicity is decreasing over cosmic time and is traced similarly by quasar-DLAs and GRB-DLAs. We find that, overall, AV,depl is lower than AV,ext for the Milky Way and in a few lines of sight for the Magellanic Clouds, a discrepancy that is likely related to the presence of carbonaceous dust associated with dense clumps of cold neutral gas. For the other environments studied here, we find good agreement overall between the AV,ext and AV,depl.We show that the main elements ( fMX > 1%) that contribute to the dust composition, by mass, are O, Fe, Si, Mg, C, S, Ni, and Al for all the environments, with Si, Mg, and C being equivalent contributors. There are nevertheless variations in the dust composition depending on the overall amount of dust. The abundances measured at low dust regimes in quasar- and GRB-DLAs suggest the presence of pyroxene and metallic iron in dust. These results give important information on the dust and metal content of galaxies across cosmic times, from the Milky Way up to z = 6.3.
  •  
6.
  • Runnholm, Axel, 1992-, et al. (författare)
  • On the evolution of the size of Lyman alpha haloes across cosmic time : no change in the circumgalactic gas distribution when probed by line emission
  • 2023
  • Ingår i: Monthly notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 522:3, s. 4275-4293
  • Tidskriftsartikel (refereegranskat)abstract
    • Lyman alpha (Ly alpha) is now routinely used as a tool for studying high-redshift galaxies, and its resonant nature means it can trace neutral hydrogen around star-forming galaxies. Integral field spectrograph measurements of high-redshift Ly alpha emitters indicate that significant extended Ly alpha halo emission is ubiquitous around such objects. We present a sample of redshift 0.23 to 0.31 galaxies observed with the Hubble Space Telescope selected to match the star formation properties of high-z samples while optimizing the observations for detection of low surface brightness Ly alpha emission. The Ly alpha escape fractions range between 0.7 and 37 per cent, and we detect extended Ly alpha emission around six out of seven targets. We find Ly alpha halo to UV scale length ratios around 6:1, which is marginally lower than high-redshift observations, and halo flux fractions between 60 and 85 per cent - consistent with high-redshift observations - when using comparable methods. However, our targets show additional extended stellar UV emission: we parametrize this with a new double exponential model. We find that this parametrization does not strongly affect the observed Ly alpha halo fractions. We find that deeper H alpha data would be required to firmly determine the origin of Ly alpha halo emission; however, there are indications that H alpha is more extended than the central FUV profile, potentially indicating conditions favourable for the escape of ionizing radiation. We discuss our results in the context of high-redshift galaxies, cosmological simulations, evolutionary studies of the circumgalactic medium in emission, and the emission of ionizing radiation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy