SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Põlme Sergei) "

Sökning: WFRF:(Põlme Sergei)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abarenkov, Kessy, et al. (författare)
  • The curse of the uncultured fungus
  • 2022
  • Ingår i: MycoKeys. - 1314-4057 .- 1314-4049. ; 86, s. 177-194
  • Tidskriftsartikel (refereegranskat)abstract
    • The international DNA sequence databases abound in fungal sequences not annotated beyond the kingdom level, typically bearing names such as “uncultured fungus”. These sequences beget low-resolution mycological results and invite further deposition of similarly poorly annotated entries. What do these sequences represent? This study uses a 767,918-sequence corpus of public full-length fungal ITS sequences to estimate what proportion of the 95,055 “uncultured fungus” sequences that represent truly unidentifiable fungal taxa – and what proportion of them that would have been straightforward to annotate to some more meaningful taxonomic level at the time of sequence deposition. Our results suggest that more than 70% of these sequences would have been trivial to identify to at least the order/family level at the time of sequence deposition, hinting that factors other than poor availability of relevant reference sequences explain the low-resolution names. We speculate that researchers’ perceived lack of time and lack of insight into the ramifications of this problem are the main explanations for the low-resolution names. We were surprised to find that more than a fifth of these sequences seem to have been deposited by mycologists rather than researchers unfamiliar with the consequences of poorly annotated fungal sequences in molecular repositories. The proportion of these needlessly poorly annotated sequences does not decline over time, suggesting that this problem must not be left unchecked.
  •  
2.
  • Abarenkov, Kessy, et al. (författare)
  • The curse of the uncultured fungus
  • 2022
  • Ingår i: MycoKeys. - : Pensoft Publishers. - 1314-4057 .- 1314-4049. ; :86, s. 177-194
  • Tidskriftsartikel (refereegranskat)abstract
    • The international DNA sequence databases abound in fungal sequences not annotated beyond the kingdom level, typically bearing names such as "uncultured fungus". These sequences beget lowresolution mycological results and invite further deposition of similarly poorly annotated entries. What do these sequences represent? This study uses a 767,918-sequence corpus of public full-length that represent truly unidentifiable fungal taxa - and what proportion of them that would have deposition. Our results suggest that more than 70% of these sequences would have been trivial to identify to at least the order/family level at the time of sequence deposition, hinting that factors other than poor availability of relevant reference sequences explain the low-resolution names. We speculate that researchers' perceived lack of time and lack of insight into the ramifications of this problem are the main explanations for the low-resolution names. We were surprised to find that more than a fifth of these sequences seem to have been deposited by mycologists rather than researchers unfamiliar with the consequences of poorly annotated fungal sequences in molecular repositories. The proportion of these needlessly poorly annotated sequences does not decline over time, suggesting that this problem must not be left unchecked.
  •  
3.
  • Bahram, Mohammad, et al. (författare)
  • The distance decay of similarity in communities of ectomycorrhizal fungi in different ecosystems and scales
  • 2013
  • Ingår i: Journal of Ecology. - : Wiley. - 0022-0477 .- 1365-2745. ; 101:5, s. 1335-1344
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite recent advances in understanding community ecology of ectomycorrhizal fungi, little is known about their spatial patterning and the underlying mechanisms driving these patterns across different ecosystems. * This meta-study aimed to elucidate the scale, rate and causes of spatial structure of ectomycorrhizal fungal communities in different ecosystems by analysing 16 and 55 sites at the local and global scales, respectively. We examined the distance decay of similarity relationship in species- and phylogenetic lineage-based communities in relation to sampling and environmental variables. * Tropical ectomycorrhizal fungal communities exhibited stronger distance-decay patterns compared to non-tropical communities. Distance from the equator and sampling area were the main determinants of the extent of distance decay in fungal communities. The rate of distance decay was negatively related to host density at the local scale. At the global scale, lineage-level community similarity decayed faster with latitude than with longitude. * Synthesis. Spatial processes play a stronger role and over a greater scale in structuring local communities of ectomycorrhizal fungi than previously anticipated, particularly in ecosystems with greater vegetation age and closer to the equator. Greater rate of distance decay occurs in ecosystems with lower host density that may stem from increasing dispersal and establishment limitation. The relatively strong latitude effect on distance decay of lineage-level community similarity suggests that climate affects large-scale spatial processes and may cause phylogenetic clustering of ectomycorrhizal fungi at the global scale.
  •  
4.
  • Kohout, Petr, et al. (författare)
  • Elevation, space and host plant species structure Ericaceae root-associated fungal communities in Papua New Guinea
  • 2017
  • Ingår i: Fungal ecology. - : Elsevier BV. - 1754-5048 .- 1878-0083. ; 30, s. 112-121
  • Tidskriftsartikel (refereegranskat)abstract
    • Our study aimed to identify significant predictors (spatial distance, elevation, host plant taxonomy) which shape the structure of endophytic fungal (ENDF) and putative ericoid mycorrhizal (ErMF) communities associated with roots of Ericaceae in Papua New Guinea. Roots of five Ericaceae together with one non-Ericaceae species were sampled at an experimental site and one common Ericaceae species was chosen for sampling along an elevation gradient. ENDF and putative ErMF communities were determined using the 454-sequencing approach. ENDF as well as putative ErMF communities were affected by interacting host plant. While the putative ErMF community was structured by host plants at the genus level, the ENDF community was affected by host plant subfamily level. Composition of ENDF as well as putative ErMF communities were affected by elevation. Non-Ericaceae plant species (Hypericum sp.) harbored similar communities of ENDF as well as putative ErMF as Ericaceae plants. Our study provides a first insight into ErMF and ENDF community ecology of Ericaceae in Papua New Guinea.
  •  
5.
  • Mikryukov, Vladimir, et al. (författare)
  • Connecting the multiple dimensions of global soil fungal diversity
  • 2023
  • Ingår i: Science advances. - 2375-2548. ; 9:48
  • Tidskriftsartikel (refereegranskat)abstract
    • How the multiple facets of soil fungal diversity vary worldwide remains virtually unknown, hindering the management of this essential species-rich group. By sequencing high-resolution DNA markers in over 4000 topsoil samples from natural and human-altered ecosystems across all continents, we illustrate the distributions and drivers of different levels of taxonomic and phylogenetic diversity of fungi and their ecological groups. We show the impact of precipitation and temperature interactions on local fungal species richness (alpha diversity) across different climates. Our findings reveal how temperature drives fungal compositional turnover (beta diversity) and phylogenetic diversity, linking them with regional species richness (gamma diversity). We integrate fungi into the principles of global biodiversity distribution and present detailed maps for biodiversity conservation and modeling of global ecological processes.
  •  
6.
  • Nilsson, R. Henrik, 1976, et al. (författare)
  • How, not if, is the question mycologists should be asking about DNA-based typification
  • 2023
  • Ingår i: MycoKeys. - : Pensoft Publishers. - 1314-4057 .- 1314-4049. ; :96, s. 143-157
  • Tidskriftsartikel (refereegranskat)abstract
    • Fungal metabarcoding of substrates such as soil, wood, and water is uncovering an unprecedented number of fungal species that do not seem to produce tangible morphological structures and that defy our best attempts at cultivation, thus falling outside the scope of the International Code of Nomenclature for algae, fungi, and plants. The present study uses the new, ninth release of the species hypotheses of the UNITE database to show that species discovery through environmental sequencing vastly outpaces traditional, Sanger sequencing-based efforts in a strongly increasing trend over the last five years. Our findings chal-lenge the present stance of some in the mycological community - that the current situation is satisfactory and that no change is needed to "the code" - and suggest that we should be discussing not whether to allow DNA-based descriptions (typifications) of species and by extension higher ranks of fungi, but what the precise requirements for such DNA-based typifications should be. We submit a tentative list of such criteria for further discussion. The present authors hope for a revitalized and deepened discussion on DNA-based typification, because to us it seems harmful and counter-productive to intentionally deny the overwhelming majority of extant fungi a formal standing under the International Code of Nomenclature for algae, fungi, and plants.
  •  
7.
  • Tedersoo, Leho, et al. (författare)
  • Global diversity and geography of soil fungi
  • 2014
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 346:6213, s. artikel nr 1256688-
  • Tidskriftsartikel (refereegranskat)abstract
    • Fungi play major roles in ecosystem processes, but the determinants of fungal diversity and biogeographic patterns remain poorly understood. Using DNA metabarcoding data from hundreds of globally distributed soil samples, we demonstrate that fungal richness is decoupled from plant diversity. The plant-to-fungus richness ratio declines exponentially toward the poles. Climatic factors, followed by edaphic and spatial variables, constitute the best predictors of fungal richness and community composition at the global scale. Fungi show similar latitudinal diversity gradients to other organisms, with several notable exceptions. These findings advance our understanding of global fungal diversity patterns and permit integration of fungi into a general macroecological framework.
  •  
8.
  • Tedersoo, Leho, et al. (författare)
  • Global patterns in endemicity and vulnerability of soil fungi.
  • 2022
  • Ingår i: Global change biology. - : Wiley. - 1365-2486 .- 1354-1013. ; 28:22, s. 6696-6710
  • Tidskriftsartikel (refereegranskat)abstract
    • Fungi are highly diverse organisms, which provide multiple ecosystem services. However, compared with charismatic animals and plants, the distribution patterns and conservation needs of fungi have been little explored. Here, we examined endemicity patterns, global change vulnerability and conservation priority areas for functional groups of soil fungi based on six global surveys using a high-resolution, long-read metabarcoding approach. We found that the endemicity of all fungi and most functional groups peaks in tropical habitats, including Amazonia, Yucatan, West-Central Africa, Sri Lanka, and New Caledonia, with a negligible island effect compared with plants and animals. We also found that fungi are predominantly vulnerable to drought, heat and land-cover change, particularly in dry tropical regions with high human population density. Fungal conservation areas of highest priority include herbaceous wetlands, tropical forests, and woodlands. We stress that more attention should be focused on the conservation of fungi, especially root symbiotic arbuscular mycorrhizal and ectomycorrhizal fungi in tropical regions as well as unicellular early-diverging groups and macrofungi in general. Given the low overlap between the endemicity of fungi and macroorganisms, but high conservation needs in both groups, detailed analyses on distribution and conservation requirements are warranted for other microorganisms and soil organisms.
  •  
9.
  • Tedersoo, Leho, et al. (författare)
  • Response to Comment on “Global diversity and geography of soil fungi”
  • 2015
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 349:6251
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Schadt and Rosling (Technical Comment, 26 June 2015, p. 1438) argue that primer-template mismatches neglected the fungal class Archaeorhizomycetes in a global soil survey. Amplicon-based metabarcoding of nine barcode-primer pair combinations and polymerase chain reaction (PCR)–free shotgun metagenomics revealed that barcode and primer choice and PCR bias drive the diversity and composition of microorganisms in general, but the Archaeorhizomycetes were little affected in the global study. We urge that careful choice of DNA markers and primers is essential for ecological studies using high-throughput sequencing for identification.
  •  
10.
  • Tedersoo, Leho, et al. (författare)
  • Shotgun metagenomes and multiple primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi
  • 2015
  • Ingår i: MycoKeys. - : Pensoft Publishers. - 1314-4057 .- 1314-4049. ; 10, s. 1-43
  • Tidskriftsartikel (refereegranskat)abstract
    • Rapid development of high-throughput (HTS) molecular identification methods has revolutionized our knowledge about taxonomic diversity and ecology of fungi. However, PCR-based methods exhibit multiple technical shortcomings that may bias our understanding of the fungal kingdom. This study was initiated to quantify potential biases in fungal community ecology by comparing the relative performance of amplicon-free shotgun metagenomics and amplicons of nine primer pairs over seven nuclear ribosomal DNA (rDNA) regions often used in metabarcoding analyses. The internal transcribed spacer (ITS) barcodes ITS1 and ITS2 provided greater taxonomic and functional resolution and richness of operational taxonomic units (OTUs) at the 97% similarity threshold compared to barcodes located within the ribosomal small subunit (SSU) and large subunit (LSU) genes. All barcode-primer pair combinations provided consistent results in ranking taxonomic richness and recovering the importance of floristic variables in driving fungal community composition in soils of Papua New Guinea. The choice of forward primer explained up to 2.0% of the variation in OTU-level analysis of the ITS1 and ITS2 barcode data sets. Across the whole data set, barcode-primer pair combination explained 37.6–38.1% of the variation, which surpassed any environmental signal. Overall, the metagenomics data set recovered a similar taxonomic overview, but resulted in much lower fungal rDNA sequencing depth, inability to infer OTUs, and high uncertainty in identification. We recommend the use of ITS2 or the whole ITS region for metabarcoding and we advocate careful choice of primer pairs in consideration of the relative proportion of fungal DNA and expected dominant groups.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11
Typ av publikation
tidskriftsartikel (11)
Typ av innehåll
refereegranskat (10)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Põlme, Sergei (11)
Bahram, Mohammad (8)
Tedersoo, Leho (8)
Abarenkov, Kessy (7)
Kõljalg, Urmas (6)
Nilsson, R. Henrik, ... (6)
visa fler...
Anslan, Sten (6)
Ryberg, Martin (4)
Kohout, Petr (4)
Põldmaa, Kadri (3)
Jansson, Tobias (3)
Ghobad-Nejhad, Masoo ... (3)
Sánchez-García, Mari ... (3)
Khomich, Maryia (3)
Mikryukov, Vladimir (3)
Bonito, Gregory (3)
Drenkhan, Rein (3)
Henkel, Terry W. (3)
Agan, Ahto (2)
Kristiansson, Erik, ... (2)
Scharn, Ruud (2)
Kurina, Olavi (2)
Nogal-Prata, Sandra (2)
Gómez-Martínez, Dani ... (2)
Corcoll, Natàlia, 19 ... (2)
Wurzbacher, Christia ... (2)
Kjöller, Rasmus (2)
Roslin, Tomas (2)
Yorou, Nourou S. (2)
Zizka, Alexander (2)
Dai, Dong Qin (2)
Delgado-Baquerizo, M ... (2)
Netherway, Tarquin (2)
Hildebrand, Falk (2)
Diédhiou, Abdala G. (2)
Öpik, Maarja (2)
Bråthen, Kari Anne (2)
Bauters, Marijn (2)
Verbeken, Annemieke (2)
Heilmann-Clausen, Ja ... (2)
Brearley, Francis Q. (2)
Marín, César (2)
Zobel, Martin (2)
Panksep, Kristel (2)
Furneaux, Brendan (2)
Adamson, Kalev (2)
Gohar, Daniyal (2)
Smith, Matthew E. (2)
Moora, Mari (2)
Runnel, Kadri (2)
visa färre...
Lärosäte
Uppsala universitet (8)
Göteborgs universitet (7)
Sveriges Lantbruksuniversitet (5)
Chalmers tekniska högskola (3)
Språk
Engelska (11)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (11)
Lantbruksvetenskap (5)
Medicin och hälsovetenskap (2)
Humaniora (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy