SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pöhlker Christopher) "

Sökning: WFRF:(Pöhlker Christopher)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Artaxo, Paulo, et al. (författare)
  • Tropical and Boreal Forest – Atmosphere Interactions : A Review
  • 2022
  • Ingår i: Tellus. Series B, Chemical and physical meteorology. - : Stockholm University Press. - 0280-6509 .- 1600-0889. ; 74:1, s. 24-163
  • Forskningsöversikt (refereegranskat)abstract
    • This review presents how the boreal and the tropical forests affect the atmosphere, its chemical composition, its function, and further how that affects the climate and, in return, the ecosystems through feedback processes. Observations from key tower sites standing out due to their long-term comprehensive observations: The Amazon Tall Tower Observatory in Central Amazonia, the Zotino Tall Tower Observatory in Siberia, and the Station to Measure Ecosystem-Atmosphere Relations at Hyytiäla in Finland. The review is complemented by short-term observations from networks and large experiments.The review discusses atmospheric chemistry observations, aerosol formation and processing, physiochemical aerosol, and cloud condensation nuclei properties and finds surprising similarities and important differences in the two ecosystems. The aerosol concentrations and chemistry are similar, particularly concerning the main chemical components, both dominated by an organic fraction, while the boreal ecosystem has generally higher concentrations of inorganics, due to higher influence of long-range transported air pollution. The emissions of biogenic volatile organic compounds are dominated by isoprene and monoterpene in the tropical and boreal regions, respectively, being the main precursors of the organic aerosol fraction.Observations and modeling studies show that climate change and deforestation affect the ecosystems such that the carbon and hydrological cycles in Amazonia are changing to carbon neutrality and affect precipitation downwind. In Africa, the tropical forests are so far maintaining their carbon sink.It is urgent to better understand the interaction between these major ecosystems, the atmosphere, and climate, which calls for more observation sites, providing long-term data on water, carbon, and other biogeochemical cycles. This is essential in finding a sustainable balance between forest preservation and reforestation versus a potential increase in food production and biofuels, which are critical in maintaining ecosystem services and global climate stability. Reducing global warming and deforestation is vital for tropical forests.
  •  
2.
  • Schmale, Julia, et al. (författare)
  • Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories
  • 2018
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 18:4, s. 2853-2881
  • Tidskriftsartikel (refereegranskat)abstract
    • Aerosol-cloud interactions (ACI) constitute the single largest uncertainty in anthropogenic radiative forcing. To reduce the uncertainties and gain more confidence in the simulation of ACI, models need to be evaluated against observations, in particular against measurements of cloud condensation nuclei (CCN). Here we present a data set - ready to be used for model validation - of long-term observations of CCN number concentrations, particle number size distributions and chemical composition from 12 sites on 3 continents. Studied environments include coastal background, rural background, alpine sites, remote forests and an urban surrounding. Expectedly, CCN characteristics are highly variable across site categories. However, they also vary within them, most strongly in the coastal background group, where CCN number concentrations can vary by up to a factor of 30 within one season. In terms of particle activation behaviour, most continental stations exhibit very similar activation ratios (relative to particles 20nm) across the range of 0.1 to 1.0% supersaturation. At the coastal sites the transition from particles being CCN inactive to becoming CCN active occurs over a wider range of the supersaturation spectrum. Several stations show strong seasonal cycles of CCN number concentrations and particle number size distributions, e.g. at Barrow (Arctic haze in spring), at the alpine stations (stronger influence of polluted boundary layer air masses in summer), the rain forest (wet and dry season) or Finokalia (wildfire influence in autumn). The rural background and urban sites exhibit relatively little variability throughout the year, while short-term variability can be high especially at the urban site. The average hygroscopicity parameter, calculated from the chemical composition of submicron particles was highest at the coastal site of Mace Head (0.6) and lowest at the rain forest station ATTO (0.2-0.3). We performed closure studies based on -Köhler theory to predict CCN number concentrations. The ratio of predicted to measured CCN concentrations is between 0.87 and 1.4 for five different types of . The temporal variability is also well captured, with Pearson correlation coefficients exceeding 0.87. Information on CCN number concentrations at many locations is important to better characterise ACI and their radiative forcing. But long-term comprehensive aerosol particle characterisations are labour intensive and costly. Hence, we recommend operating migrating-CCNCs to conduct collocated CCN number concentration and particle number size distribution measurements at individual locations throughout one year at least to derive a seasonally resolved hygroscopicity parameter. This way, CCN number concentrations can only be calculated based on continued particle number size distribution information and greater spatial coverage of long-term measurements can be achieved.
  •  
3.
  • Blichner, Sara M., 1989-, et al. (författare)
  • Process-evaluation of forest aerosol-cloud-climate feedback shows clear evidence from observations and large uncertainty in models
  • 2024
  • Ingår i: Nature Communications. - 2041-1723. ; 15
  • Tidskriftsartikel (refereegranskat)abstract
    • Natural aerosol feedbacks are expected to become more important in the future, as anthropogenic aerosol emissions decrease due to air quality policy. One such feedback is initiated by the increase in biogenic volatile organic compound (BVOC) emissions with higher temperatures, leading to higher secondary organic aerosol (SOA) production and a cooling of the surface via impacts on cloud radiative properties. Motivated by the considerable spread in feedback strength in Earth System Models (ESMs), we here use two long-term observational datasets from boreal and tropical forests, together with satellite data, for a process-based evaluation of the BVOC-aerosol-cloud feedback in four ESMs. The model evaluation shows that the weakest modelled feedback estimates can likely be excluded, but highlights compensating errors making it difficult to draw conclusions of the strongest estimates. Overall, the method of evaluating along process chains shows promise in pin-pointing sources of uncertainty and constraining modelled aerosol feedbacks.
  •  
4.
  • Khadir, Théodore, 1996-, et al. (författare)
  • Sink, Source or Something In-Between? Net Effects of Precipitation on Aerosol Particle Populations
  • 2023
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 50:19
  • Tidskriftsartikel (refereegranskat)abstract
    • Interactions between atmospheric aerosols, clouds, and precipitation impact Earth's radiative balance and air quality, yet remain poorly constrained. Precipitating clouds serve as major sinks for particulate matter, but recent studies suggest that precipitation may also act as a particle source. The magnitude of the sources versus sinks, particularly for cloud condensation nuclei (CCN) numbers, remain unquantified. This study analyzes multi-year in situ observations from tropical and boreal forests, as well as Arctic marine environment, showing links between recent precipitation and enhanced particle concentrations, including CCN-sized particles. In some cases, the magnitude of precipitation-related source equals or surpasses corresponding removal effect. Our findings highlight the importance of cloud-processed material in determining near-surface particle concentrations and the value of long-term in situ observations for understanding aerosol particle life cycle. Robust patterns emerge from sufficiently long data series, allowing for quantitative assessment of the large-scale significance of new phenomena observed in case studies.
  •  
5.
  • Patade, Sachin, et al. (författare)
  • Empirical formulation for multiple groups of primary biological ice nucleating particles from field observations over Amazonia
  • 2021
  • Ingår i: Journal of the Atmospheric Sciences. - 1520-0469. ; 78, s. 2195-2220
  • Tidskriftsartikel (refereegranskat)abstract
    • To resolve the various types of biological ice nuclei (IN) with atmospheric models, an extension of the empirical parameterization (EP) is proposed to predict the active IN from multiple groups of primary biological aerosol particles (PBAPs). Our approach is to utilize coincident observations of PBAP sizes, concentrations, biological composition, and ice nucleating ability. The parameterization organizes PBAPs into five basic groups: 1) fungal spores, 2) bacteria, 3) pollen, 4) viral particles, plant/animal detritus, 5) algae, and their respective fragments. This new biological component of the EP was constructed by fitting predicted concentrations of PBAP IN to those observed at the Amazon Tall Tower Observatory (ATTO) site located in the central Amazon. The fitting parameters for pollen and viral particles and plant/animal detritus, which are much less active as IN than fungal and bacterial groups, are constrained based on their ice nucleation activity from the literature. The parameterization has empirically derived dependencies on the surface area of each group (except algae), and the effects of variability in their mean sizes and number concentrations are represented via their influences on surface area. The concentration of active algal IN is estimated from literature-based measurements. Predictions of this new biological component of the EP are consistent with previous laboratory and field observations not used in its construction. The EP scheme was implemented in a 0D parcel model. It confirms that biological IN account for most of the total IN activation at temperatures warmer than −20°C and at colder temperatures dust and soot become increasingly more important to ice nucleation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy