SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pörtner H. O.) "

Sökning: WFRF:(Pörtner H. O.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sui, Y., et al. (författare)
  • Combined effects of short-term exposure to elevated CO2 and decreased O2 on the physiology and energy budget of the thick shell mussel Mytilus coruscus
  • 2016
  • Ingår i: Chemosphere. - : Elsevier BV. - 0045-6535. ; 155, s. 207-216
  • Tidskriftsartikel (refereegranskat)abstract
    • Hypoxia and ocean acidification are two consequences of anthropogenic activities. These global trends occur on top of natural variability. In environments such as estuarine areas, short-term acute pH and O2 fluctuations are occurring simultaneously. The present study tested the combined effects of short-term seawater acidification and hypoxia on the physiology and energy budget of the thick shell mussel Mytilus coruscus. Mussels were exposed for 72 h to six combined treatments with three pH levels (8.1, 7.7 and 7.3) and two dissolved oxygen (DO) levels (2 mg L-1, 6 mg L-1). Clearance rate (CR), food absorption efficiency (AE), respiration rate (RR), ammonium excretion rate (ER), O:N ratio and scope for growth (SFG) were significantly reduced, and faecal organic dry weight ratio (E) was significantly increased at low DO. Low pH did not lead to a reduced SFG. Interactive effects of pH and DO were observed for CR, E and RR. Principal component analysis (PCA) revealed positive relationships among most physiological indicators, especially between SFG and CR under normal DO conditions. These results demonstrate that Mytilus coruscus was sensitive to short-term (72 h) exposure to decreased O2 especially if combined with decreased pH levels. In conclusion, the short-term oxygen and pH variation significantly induced physiological changes of mussels with some interactive effects. © 2016 Elsevier Ltd.
  •  
2.
  • Caretta, Martina Angela, et al. (författare)
  • Water
  • 2022
  • Ingår i: Climate Change 2022: Impacts, Adaptation and Vulnerability : Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change - Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)
  •  
3.
  • Michael, Katharina, et al. (författare)
  • Adjustments of molecular key components of branchial ion and pH regulation in Atlantic cod (Gadus morhua) in response to ocean acidification and warming
  • 2016
  • Ingår i: Comparative Biochemistry and Physiology - Part B: Biochemistry & Molecular Biology. - : Elsevier BV. - 1096-4959 .- 1879-1107. ; 193, s. 33-46
  • Tidskriftsartikel (refereegranskat)abstract
    • Marine teleost fish sustain compensation of extracellular pH after exposure to hypercapnia by means of efficient ion and acid-base regulation. Elevated rates of ion and acid-base regulation under hypercapnia may be stimulated further by elevated temperature. Here, we characterized the regulation of transepithelial ion transporters (NKCC1, NBC1, SLC26A6, NHE1 and 2) and ATPases (Na+/K+ ATPase and V-type H+ ATPase) in gills of Atlantic cod (Gadus morhua) after 4weeks of exposure to ambient and future PCO2 levels (550μatm, 1200μatm, 2200μatm) at optimum (10°C) and summer maximum temperature (18°C), respectively. Gene expression of most branchial ion transporters revealed temperature- and dose-dependent responses to elevated PCO2. Transcriptional regulation resulted in stable protein expression at 10°C, whereas expression of most transport proteins increased at medium PCO2 and 18°C. mRNA and protein expression of distinct ion transport proteins were closely co-regulated, substantiating cellular functional relationships. Na+/K+ ATPase capacities were PCO2 independent, but increased with acclimation temperature, whereas H+ ATPase capacities were thermally compensated but decreased at medium PCO2 and 10°C. When functional capacities of branchial ATPases were compared with mitochondrial F1Fo ATP-synthase strong correlations of F1Fo ATP-synthase and ATPase capacities generally indicate close coordination of branchial aerobic ATP demand and supply. Our data indicate physiological plasticity in the gills of cod to adjust to a warming, acidifying ocean within limits. In light of the interacting and non-linear, dose-dependent effects of both climate factors the role of these mechanisms in shaping resilience under climate change remains to be explored. © 2015 The Authors.
  •  
4.
  • Rogelj, Joeri, et al. (författare)
  • Mitigation pathways compatible with 1.5°C in the context of sustainable development
  • 2018
  • Ingår i: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. ; , s. 93-174
  • Bokkapitel (refereegranskat)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy