SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pašti Igor A.) "

Sökning: WFRF:(Pašti Igor A.)

  • Resultat 1-10 av 31
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brkovic, S. M., et al. (författare)
  • Non-stoichiometric tungsten-carbide-oxide-supported Pt–Ru anode catalysts for PEM fuel cells – From basic electrochemistry to fuel cell performance
  • 2020
  • Ingår i: International journal of hydrogen energy. - : Elsevier. - 0360-3199 .- 1879-3487. ; 45:27, s. 13929-13938
  • Tidskriftsartikel (refereegranskat)abstract
    • Durability and cost of Proton Exchange Membrane fuel cells (PEMFCs) are two major factors delaying their commercialization. Cost is associated with the price of the catalysts, while durability is associated with degradation and poisoning of the catalysts, primarily by CO. This motivated us to develop tungsten-carbide-oxide (WxCyOz) as a new non-carbon based catalyst support for Pt–Ru–based anode PEMFC catalyst. The aim was to improve performance and obtain higher CO tolerance compared to commercial catalysts. The performance of obtained PtRu/WxCyOz catalysts was investigated using cyclic voltammetry, linear scan voltammetry and rotating disk electrode voltammetry. Particular attention was given to the analysis of CO poisoning, to better understand how WxCyOz species can contribute to the CO tolerance of PtRu/WxCyOz. Improved oxidation of COads at low potentials (E < 0.5 V vs. RHE) was ascribed to OH provided by the oxide phase at the interfacial region between the support and the PtRu particles. On the other hand, at high potentials (E > 0.5 V vs. RHE) CO removal proceeds dominantly via OH provided from the oxidized metal sites. The obtained catalyst with the best performance (30% PtRu/WxCyOz) was tested as an anode catalyst in PEM fuel cell. When using synthetic reformate as a fuel in PEMFC, there is a significant power drop of 35.3 % for the commercial 30% PtRu/C catalyst, while for the PtRu/WxCyOz anode catalyst this drop is around 16 %.
  •  
2.
  • Jovanović, A., et al. (författare)
  • Structural and electronic properties of V2O5 and their tuning by doping with 3d elements-modelling using the DFT+ U method and dispersion correction
  • 2018
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry. - 1463-9076 .- 1463-9084. ; 20:20, s. 13934-13943
  • Tidskriftsartikel (refereegranskat)abstract
    • New electrode materials for alkaline-ion batteries are a timely topic. Among many promising candidates, V2O5 is one of the most interesting cathode materials. While having very high theoretical capacity, in practice, its performance is hindered by its low stability and poor conductivity. As regards the theoretical descriptions of V2O5, common DFT-GGA calculations fail to reproduce both the electronic and crystal structures. While the band gap is underestimated, the interlayer spacing is overestimated as weak dispersion interactions are not properly described within GGA. Here we show that the combination of the DFT+U method and semi-empirical D2 correction can compensate for the drawbacks of the GGA when it comes to the modelling of V2O5. When compared to common PBE calculations, with a modest increase in the computational cost, PBE+U+D2 fully reproduced the experimental band gap of V2O5, while the errors in the lattice parameters are only a few percent. Using the proposed PBE+U+D2 methodology we studied the doping of V2O5 with 3d elements (from Sc to Zn). We show that both the structural and electronic parameters are affected by doping. Most importantly, a significant increase in conductivity is expected upon doping, which is of great importance for the application of V2O5 in metal-ion batteries.
  •  
3.
  • Nowakowska, Sylwia, et al. (författare)
  • Adsorbate-Induced Modification of the Confining Barriers in a Quantum Box Array
  • 2018
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 12:1, s. 768-778
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantum devices depend on addressable elements, which can be modified separately and in their mutual interaction. Self-assembly at surfaces, for example, formation of a porous (metal-) organic network, provides an ideal way to manufacture arrays of identical quantum boxes, arising in this case from the confinement of the electronic (Shockley) surface state within the pores. We show that the electronic quantum box state as well as the interbox coupling can be modified locally to a varying extent by a selective choice of adsorbates, here C60, interacting with the barrier. In view of the wealth of differently acting adsorbates, this approach allows for engineering quantum states in on-surface network architectures.
  •  
4.
  • Ritopecki, Milica S. S., et al. (författare)
  • The Local Coordination Effects on the Reactivity and Speciation of Active Sites in Graphene-Embedded Single-Atom Catalysts over Wide pH and Potential Range
  • 2022
  • Ingår i: Nanomaterials. - : MDPI AG. - 2079-4991. ; 12:23
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the catalytic performance of different materials is of crucial importance for achieving further technological advancements. This especially relates to the behaviors of different classes of catalysts under operating conditions. Here, we analyzed the effects of local coordination of metal centers (Mn, Fe, Co) in graphene-embedded single-atom catalysts (SACs). We started with well-known M@N-4-graphene catalysts and systematically replaced nitrogen atoms with oxygen or sulfur atoms to obtain M@OxNy-graphene and M@SxNy-graphene SACs (x + y = 4). We show that local coordination strongly affects the electronic structure and reactivity towards hydrogen and oxygen species. However, stability is even more affected. Using the concept of Pourbaix plots, we show that the replacement of nitrogen atoms in metal coordinating centers with O or S destabilized the SACs towards dissolution, while the metal centers were easily covered by O and OH, acting as additional ligands at high anodic potentials and high pH values. Thus, not only should local coordination be considered in terms of the activity of SACs, but it is also necessary to consider its effects on the speciation of SAC active centers under different potentials and pH conditions.
  •  
5.
  • Baljozovic, Milos, et al. (författare)
  • Self-Assembly and Magnetic Order of Bi-Molecular 2D Spin Lattices of M(II,III) Phthalocyanines on Au(111)
  • 2021
  • Ingår i: MAGNETOCHEMISTRY. - : MDPI. - 2312-7481. ; 7:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Single layer low-dimensional materials are presently of emerging interest, including in the context of magnetism. In the present report, on-surface supramolecular architecturing was further developed and employed to create surface supported two-dimensional binary spin arrays on atomically clean non-magnetic Au(111). By chemical programming of the modules, different checkerboards were produced combining phthalocyanines containing metals of different oxidation and spin states, diamagnetic zinc, and a metal-free 'spacer'. In an in-depth, spectro-microscopy and theoretical account, we correlate the structure and the magnetic properties of these tunable systems and discuss the emergence of 2D Kondo magnetism from the spin-bearing components and via the physico-chemical bonding to the underlying substrate. The contributions of the individual elements, as well as the role of the electronic surface state in the bottom substrate, are discussed, also looking towards further in-depth investigations.
  •  
6.
  • Cha, Gihoon, et al. (författare)
  • As a single atom Pd outperforms Pt as the most active co-catalyst for photocatalytic H-2 evolution
  • 2021
  • Ingår i: ISCIENCE. - : Elsevier BV. - 2589-0042. ; 24:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Here, we evaluate three different noble metal co-catalysts (Pd, Pt, and Au) that are present as single atoms (SAs) on the classic benchmark photocatalyst, TiO2. To trap the single atoms on the surface, we introduced controlled surface vacancies (Ti3+-Ov) on anatase TiO2 nanosheets by a thermal reduction treatment. After anchoring identical loadings of single atoms of Pd, Pt, and Au, we measure the photocatalytic H-2 generation rate and compare it to the classic nanoparticle co-catalysts on the nanosheets. While nanoparticles yield the well-established the hydrogen evolution reaction activity sequence (Pt > Pd > Au), for the single atom form, Pd radically outperforms Pt and Au. Based on density functional theory (DFT), we ascribe this unusual photocatalytic co-catalyst sequence to the nature of the charge localization on the noble metal SAs embedded in the TiO2 surface.
  •  
7.
  • Dobrota, Ana S., et al. (författare)
  • A DFT study of the interplay between dopants and oxygen functional groups over the graphene basal plane - implications in energy-related applications
  • 2017
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : ROYAL SOC CHEMISTRY. - 1463-9076 .- 1463-9084. ; 19:12, s. 8530-8540
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the ways graphene can be functionalized is of great importance for many contemporary technologies. Using density functional theory calculations we investigate how vacancy formation and substitutional doping by B, N, P and S affect the oxidizability and reactivity of the graphene basal plane. We find that the presence of these defects enhances the reactivity of graphene. In particular, these sites act as strong attractors for OH groups, suggesting that the oxidation of graphene could start at these sites or that these sites are the most difficult to reduce. Scaling between the OH and H adsorption energies is found on both reduced and oxidized doped graphene surfaces. Using the O-2 molecule as a probe we show that a proper modelling of doped graphene materials has to take into account the presence of oxygen functional groups.
  •  
8.
  • Dobrota, Ana S., et al. (författare)
  • A general view on the reactivity of the oxygen-functionalized graphene basal plane
  • 2016
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry. - 1463-9076 .- 1463-9084. ; 18:9, s. 6580-6586
  • Tidskriftsartikel (refereegranskat)abstract
    • In this contribution we inspect the adsorption of H, OH, Cl and Pt on oxidized graphene using DFT calculations. The introduction of epoxy and hydroxyl groups on the graphene basal plane significantly alters its chemisorption properties, which can be attributed to the deformation of the basal plane and the type and distribution of these groups. We show that a general scaling relation exists between the hydrogen binding energies and the binding energies of other investigated adsorbates, which allows for a simple probing of the reactivity of oxidized graphene with only one adsorbate. The electronic states of carbon atoms located within the 2 eV interval below the Fermi level are found to be responsible for the interaction of the basal plane with the chosen adsorbates. The number of electronic states situated in this energy interval is shown to correlate with hydrogen binding energies.
  •  
9.
  • Dobrota, Ana S., et al. (författare)
  • Altering the reactivity of pristine, N- and P-doped graphene by strain engineering : A DFT view on energy related aspects
  • 2020
  • Ingår i: Applied Surface Science. - : ELSEVIER. - 0169-4332 .- 1873-5584. ; 514
  • Tidskriftsartikel (refereegranskat)abstract
    • For carbon-based materials, in contrast to metal surfaces, a general relationship between strain and reactivity is not yet established, even though there are literature reports on strained graphene. Knowledge of such relationships would be extremely beneficial for understanding the reactivity of graphene-based surfaces and finding optimisation strategies which would make these materials more suitable for targeted applications. Here we investigate the effects of compressive and tensile strain (up to +/- 5%) on the structure, electronic properties and reactivity of pure, N-doped and P-doped graphene, using DFT calculations. We demonstrate the possibility of tuning the topology of the graphene surface by strain, as well as by the choice of the dopant atom. The reactivity of (doped) strained graphene is probed using H and Na as simple adsorbates of great practical importance. Strain can both enhance and weaken H and Na adsorption on (doped) graphene. In case of Na adsorption, a linear relationship is observed between the Na adsorption energy on P-doped graphene and the phosphorus charge. A linear relationship between the Na adsorption energy on flat graphene surfaces and strain is found. Based on the adsorption energies and electrical conductivity, potentially good candidates for hydrogen storage and sodiumion battery electrodes are discussed.
  •  
10.
  • Dobrota, Ana S., et al. (författare)
  • Functionalized graphene for sodium battery applications : the DFT insights
  • 2017
  • Ingår i: Electrochimica Acta. - : Elsevier. - 0013-4686 .- 1873-3859. ; 250, s. 185-195
  • Tidskriftsartikel (refereegranskat)abstract
    • Considering the increasing interest in the use of graphene-based materials for energy conversion and storage applications, we have performed a DFT study of Na interaction with doped graphene, both in non-oxidized and oxidized forms. Oxidation seems to play the crucial role when it comes to the interaction of doped graphene materials with sodium. The dopants act as attractors of OH groups, making the material prone to oxidation, and therefore altering its affinity towards Na. In some cases, this can result in hydroxide or water formation - an irreversible change lethal for battery performance. Our results suggest that one should carefully control the oxidation level of doped graphene-based materials if they are to be used as sodium battery electrode materials as the optimal oxidation level depends on the dopant type.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 31

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy