SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pacca Igor I.G.) "

Sökning: WFRF:(Pacca Igor I.G.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bispo-Santos, Franklin, et al. (författare)
  • Columbia revisited : paleomagnetic results from the 1790 Ma colider volcanics (SW Amazonian Craton, Brazil)
  • 2008
  • Ingår i: Precambrian Research. - : Elsevier BV. - 0301-9268 .- 1872-7433. ; 164:1-2, s. 40-49
  • Tidskriftsartikel (refereegranskat)abstract
    • In an attempt to improve our understanding of the Paleoproterozoic geodynamic evolution, a paleomagnetic study was performed on 10 sites of acid volcanic rocks of the Colider Suite, southwestern Amazonian Craton. These rocks have a well-dated zircon U-Pb mean age of 1789 +/- 7 Ma. Alternating field and thermal demagnetization revealed northern (southern) directions with moderate to high upward (downward) inclinations. Rock magnetism experiments and magnetic mineralogy show that this characteristic magnetization is carried by Ti-poor magnetite or by hematite that replaces magnetite by late-magmatic cleuteric alteration. Both magnetite and hematite carry the same characteristic component. The mean direction (Dm = 183.0 degrees, Im = 53.5 degrees, N = 10, alpha(95) = 9.8 degrees, K = 25.2) yielded a paleomagnetic pole located at 298.8 degrees E, 63.3 degrees S (alpha(95) = 10.2 degrees, K = 23.6), which is classified with a quality factor Q = 5. Paleogeographic reconstructions using this pole and other reliable Paleoproterozoic poles suggest that Laurentia, Baltica, North China Craton and Amazonian Craton were located in laterally contiguous positions forming a large continental mass at 1790 Ma ago. This is reinforced by geological evidence which support the existence of the supercontinent Columbia in Paleoproterozoic times.
  •  
2.
  • Bispo-Santos, Franklin, et al. (författare)
  • Tectonic implications of the 1419 Ma Nova Guarita mafic intrusives paleomagnetic pole (Amazonian Craton) on the longevity of Nuna
  • 2012
  • Ingår i: Precambrian Research. - : Elsevier BV. - 0301-9268 .- 1872-7433. ; 196-197, s. 1-22
  • Tidskriftsartikel (refereegranskat)abstract
    • The Nuna supercontinent was probably assembled in the Paleoproterozoic, but its paleogeography and the timing for its demise are still a matter of debate. A paleomagnetic and geochronological study carried out on the Mesoproterozoic Nova Guarita dyke swarm (northern Mato Grosso State, SW Amazonian Craton) provides additional constraints on the duration of this supercontinent. Paleomagnetic AF and thermal treatment revealed south/southwest (northeast) magnetic directions with downward (upward) inclinations for nineteen analyzed sites. These directions are carried by PSD magnetite with high unblocking temperatures as indicated by additional magnetic tests, including thermomagnetic curves, hysteresis loops and the progressive acquisition of isothermal remanence in selected samples. A positive contact test with the host granite in one of the studied dykes further attests to the primary origin of the characteristic magnetic component. A mean site direction was calculated at Dm = 220.5°, Im = 45.9° (α95 = 6.5°, K = 27.7), which yielded a paleomagnetic pole located at 245.9°E, 47.9°S (A95 = 7.0°). 40Ar/39Ar dating carried out on biotites from four analyzed dykes yielded well-defined plateau ages with a mean of 1418.5 ± 3.5 Ma. The Nova Guarita pole precludes a long-lived Nuna configuration in which Laurentia, Baltica, North China, and Amazonia formed a long and continuous block as previously proposed for the Paleoproterozoic. It is nevertheless fully compatible with a SAMBA (Amazonia-Baltica) link at Mesoproterozoic times.
  •  
3.
  • D'Agrella-Filho, Manoel S., et al. (författare)
  • Direct dating of paleomagnetic results from Precambrian sediments in the Amazon craton : Evidence for Grenvillian emplacement of exotic crust in SE Appalachians of North America
  • 2008
  • Ingår i: Earth and Planetary Science Letters. - : Elsevier BV. - 0012-821X .- 1385-013X. ; 267:1-2, s. 188-199
  • Tidskriftsartikel (refereegranskat)abstract
    • We apply a new diagenetic dating technique to determine the age of magnetization for Precambrian sedimentary rocks in the SW Amazon craton. Two new palcomagnetic poles are reported from the rocks of the Aguapei Gp.: red beds of the Fortuna Fm. (P-lat = 59.8 degrees N, P-lon = 155.9 degrees E, A(95)=9.5, K= 14, 18 sites, N/n 128/115, Q=5) and the reverse-polarity mudstones of the overlying Vale da Promissao Formation (P-lat=49.5 degrees N, P-lon = 89.3 degrees E, A(95) = 12.5, K=30, 6 sites, N/n=94/80, Q=4). The Fortuna Fm. magnetization is hosted by massive, interstitial hematite cement and constitutes a post-depositional remanence. The age of diagenesis of the red beds is well-constrained by the 1149 +/- 7 Ma U-Pb age of authigenic xenotime rims on detrital zircons determined by SHRIMP analysis. The magnetite-hosted remanence of the Vale da Promissao Fm. may be detrital in origin, but the age of deposition is poorly constrained. The reliable and precisely-dated Fortuna Fun. pateomagnetic pole fixes the paleogeographic position of the Amazon craton near the SE Appalachians portion of North America at 1.15 Ga. These data demonstrate a mobile Grenvillian link between these two cratons, and support the recent identification of Amazon crust in the Blue Ridge province region of North America
  •  
4.
  • D'Agrella-Filho, Manoel S., et al. (författare)
  • The 1420 Ma Indiavaí Mafic Intrusion (SW Amazonian Craton): Paleomagnetic results and implications for the Columbia supercontinent
  • 2012
  • Ingår i: Gondwana Research. - : Elsevier BV. - 1342-937X .- 1878-0571. ; 22:3-4, s. 956-973
  • Tidskriftsartikel (refereegranskat)abstract
    • The configuration and the timing of assembly and break-up of Columbia are still matter of debate. In order to improve our knowledge about the Mesoproterozoic evolution of Columbia, a paleomagnetic study was carried out on the 1420 Ma Indiavaí mafic intrusive rocks that crosscut the polycyclic Proterozoic basement of the SW Amazonian Craton, in southwestern Mato Grosso State (Brazil). Alternating field and thermal demagnetization revealed south/southwest ChRM directions with downward inclinations for sixteen analyzed sites. These directions are probably carried by SD/PSD magnetite with high coercivities and high unblocking temperatures as indicated by additional rock magnetic tests, including thermomagnetic data, hysteresis data and the progressive acquisition of isothermal remanent magnetization. Different stable magnetization components isolated in host rocks from the basement 10 km NW away to the Indiavaí intrusion, further support the primary origin of the ChRM. A mean of the site mean directions was calculated at Dm = 209.8°, Im = 50.7° (α95 = 8.0°, K = 22.1), which yielded a paleomagnetic pole located at 249.7°E, -57.0°N (A95 = 8.6°). The similarity of this pole with the recently published 1420 Ma pole from the Nova Guarita dykes in northern Mato Grosso State suggests a similar tectonic framework for these two sites located 600 km apart, implying the bulk rigidity of the Rondonian-San Ignacio crust at that time. Furthermore these data provide new insights on the tectonic significance of the 1100-1000 Ma Nova Brasilândia belt –a major EW feature that cuts across the basement rocks of this province, which can now be interpreted as intracratonic, in contrast to previous interpretation. From a global perspective, a new Mesoproterozoic paleogeography of Columbia has been proposed based on comparison of these 1420 Ma poles and a 1780 Ma pole from Amazonia with other paleomagnetic poles of similar age from Baltica and Laurentia, a reconstruction in agreement with geological correlations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy