SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pace Vittorio) "

Sökning: WFRF:(Pace Vittorio)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Monticelli, Serena, et al. (författare)
  • Sustainable Asymmetric Organolithium Chemistry : Enantio- and Chemoselective Acylations through Recycling of Solvent, Sparteine, and Weinreb "Amine"
  • 2019
  • Ingår i: ChemSusChem. - : Wiley. - 1864-5631 .- 1864-564X. ; 12:6, s. 1147-1154
  • Tidskriftsartikel (refereegranskat)abstract
    • The well-established Hoppe-Beak chemistry, which involves enantioselective generation of organolithium compounds in the presence of (-)-sparteine, was revisited and applied to unprecedented acylations with Weinreb amides to access highly enantioenriched alpha-oxyketones and cyclic alpha-aminoketones. Recycling of the sustainable solvent cyclopentyl methyl ether, sparteine, and the released Weinreb amine [HNMe(OMe)] was possible through a simple work-up procedure that enabled full recovery of these precious materials. The methodology features a robust scope and flexibility, thus allowing the enantioselective preparation of scaffolds amenable of further derivatization.
  •  
2.
  • Pace, Vittorio, et al. (författare)
  • Increasing the Reactivity of Amides towards Organometallic Reagents : An Overview
  • 2014
  • Ingår i: Advanced Synthesis and Catalysis. - : Wiley. - 1615-4150 .- 1615-4169. ; 356:18, s. 3697-3736
  • Forskningsöversikt (refereegranskat)abstract
    • The nucleophilic addition of carbon nucleophiles to amides has traditionally been a difficult task, both due to reactivity and selectivity problems. When successful, these processes would represent straightforward routes towards carbonyl-type or amine compounds, depending on the fate of the generated tetrahedral intermediate. The direct addition of nucleophiles to amides for the preparation of ketones has been studied and applied to the syntheses of several natural products. On the other hand, the addition of nucleophiles to amides to obtain substituted amines represented a major challenge, and only scattered applications on particular substrates have appeared. Initial improvements were based on the activation of amides by introduction of particular substituents, such as in N-methoxy amides (Weinreb amides) or electron-withdrawing groups able to increase the carbon nucleophilicity. Although these strategies facilitate the introduction of nucleophiles, chemoselectivity issues arise when additional electrophilic moieties (i.e., carbonyls) are present, thus decreasing the versatility of the methods. In recent years, important advancements towards fully chemoselective methods have been realized. The capture of tetrahedral intermediates with acids generates highly electrophilic iminium species able to undergo chemoselective additions of various nucleophiles, thus accessing substituted amines. Alternatively, the in situ generation of an iminium triflate ion allows highly chemoselective additions of nucleophiles, yielding amines, ketones or ketimines. Also thioamides can be used as precursors of ketones or alpha-substituted amines. The success of the above methodologies is further showcased by the application in various syntheses of natural products or biologically active molecules.
  •  
3.
  • Söderström, Marcus, 1992- (författare)
  • C1 Building Blocks: New Approaches for Thiomethylations and Esterification
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The thioether motif is found in numerous pharmaceuticals. The simplest form of this motif, the methyl-thioether is similarly found in many biologically active compounds and has exhibited many advantageous properties. The installation of the thiomethyl moiety can be troublesome due to the toxicity and malodor of small sulfur reagents. To avoid these issues, many alternative sources and methods have been developed, although these often require metal catalysis, or operate via electrophilic species as the sulfur source.The first section of this thesis covers the discovery and development of BF3SMe2 as a Lewis acid and non-malodorous source for nucleophilic installation of the thiomethyl moiety. In paper I, this reagent is leveraged for the Lewis acid activation and the nucleophilic thiomethylation of electron-deficient haloarenes. The reagent was also found to be a selective reductant for nitropyridines and could in some instances perform concomitant thiomethylation via C-H substitution. The nucleophilic installation of the thiomethyl moiety was continued in paper II, where BF3SMe2 was developed for the conversion of aromatic aldehydes into methyl-dithioacetals. The dithioacetal is an important protecting group, and a useful intermediate, and since there are only a handful of reported strategies for the synthesis of the methyl-analog, this method represents an important addition to existing methods. In addition, BF3SMe2 was able to promote Friedel-Crafts reactions between aldehydes and electron-rich arenes, resulting in unsymmetrical, thiomethylated diarylmethanes. In the final part of this section, BF3SMe2 was used for the activation of trifluoromethylarenes for defluorination and sulfur incorporation, resulting in the methyl-dithioester moiety. This functional group is a useful intermediate, but current methodology for its synthesis suffers from several drawbacks, including multistep reactions. The method developed in paper III is a convenient one-step approach to reach the methyl-dithioester, and was also expanded to one-pot synthesis of thioamides and different heterocyclic systems starting from the trifluoromethyl moiety.In the second section of this thesis, an in situ method for diazomethane release and consumption was investigated and applied. Diazomethane is a useful reagent with a unique reactivity profile, including mild and selective O-methylation of carboxylic acids. The reactivity of this gaseous reagent however comes with hazards, such as high toxicity. Therefore, earlier efforts have been made for in situ generation of diazomethane, although with limitations such as specific solvent requirements or alkaline conditions. The method developed in paper IV however is an improvement upon these with base-free conditions, and wide solvent compatibility, and was successfully applied to the methylation of carboxylic acids, solvent-mediated deuterium labeling without any a priori deuterium incorporation, and synthesis of diazoketones.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy