SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Padayachee S.) "

Sökning: WFRF:(Padayachee S.)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Lyons, Oliver, et al. (författare)
  • Mutations in EPHB4 cause human venous valve aplasia
  • 2021
  • Ingår i: JCI Insight. - : American Society For Clinical Investigation. - 2379-3708. ; 6:18
  • Tidskriftsartikel (refereegranskat)abstract
    • Venous valve (VV) failure causes chronic venous insufficiency, but the molecular regulation of valve development is poorly understood. A primary lymphatic anomaly, caused by mutations in the receptor tyrosine kinase EPHB4, was recently described, with these patients also presenting with venous insufficiency. Whether the venous anomalies are the result of an effect on VVs is not known. VV formation requires complex "organization" of valve-forming endothelial cells, including their reorientation perpendicular to the direction of blood flow. Using quantitative ultrasound, we identified substantial VV aplasia and deep venous reflux in patients with mutations in EPHB4. We used a GFP reporter in mice to study expression of its ligand, ephrinB2, and analyzed developmental phenotypes after conditional deletion of floxed Ephb4 and Efnb2 alleles. EphB4 and ephrinB2 expression patterns were dynamically regulated around organizing valve-forming cells. Efnb2 deletion disrupted the normal endothelial expression patterns of the gap junction proteins connexin37 and connexin43 (both required for normal valve development) around reorientating valve-forming cells and produced deficient valve-forming cell elongation, reorientation, polarity, and proliferation. Ephb4 was also required for valve-forming cell organization and subsequent growth of the valve leaflets. These results uncover a potentially novel cause of primary human VV aplasia.
  •  
7.
  • Padayachee, Eden R., 1986, et al. (författare)
  • Cerebrospinal fluid-induced retardation of amyloid beta aggregation correlates with Alzheimer's disease and the APOE epsilon 4 allele
  • 2016
  • Ingår i: Brain Research. - : Elsevier BV. - 0006-8993. ; 1651, s. 11-16
  • Tidskriftsartikel (refereegranskat)abstract
    • Misfolding and aggregation of amyloid beta (A beta) are key features of Alzheimer's disease (AD) pathogenesis, but the molecular events controlling this process are not known in detail. In vivo, A beta aggregation and plaque formation occur in the interstitial fluid of the brain extracellular matrix. This fluid communicates freely with cerebrospinal fluid (CSF). Here, we examined the effect of human CSF on A beta aggregation kinetics in relation to AD diagnosis and carrier status of the apolipoprotein E (APOE) epsilon 4 allele, the main genetic risk factor for sporadic AD. The aggregation of A beta was inhibited in the presence of CSF and, surprisingly, the effect was more pronounced in APOE epsilon 4 carriers. However, by fractionation of CSF using size exclusion chromatography, it became evident that it was not the ApoE protein itself that conveyed the inhibition, since the retarding species eluted at lower volume, corresponding to a much higher molecular weight, than ApoE monomers. Cholesterol quantification and immunoblotting identified high-density lipoprotein particles in the retarding fractions, indicating that such particles may be responsible for the inhibition. These results add information to the yet unresolved puzzle on how the risk factor of APOE epsilon 4 functions in AD pathogenesis. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
  •  
8.
  • Padayachee, E. R., et al. (författare)
  • Cerebrospinal fluid-induced retardation of amyloid β aggregation correlates with Alzheimer's disease and the APOE ε4 allele
  • 2016
  • Ingår i: Brain Research. - : Elsevier BV. - 0006-8993. ; 1651, s. 11-16
  • Tidskriftsartikel (refereegranskat)abstract
    • Misfolding and aggregation of amyloid β (Aβ) are key features of Alzheimer's disease (AD) pathogenesis, but the molecular events controlling this process are not known in detail. In vivo, Aβ aggregation and plaque formation occur in the interstitial fluid of the brain extracellular matrix. This fluid communicates freely with cerebrospinal fluid (CSF). Here, we examined the effect of human CSF on Aβ aggregation kinetics in relation to AD diagnosis and carrier status of the apolipoprotein E (APOE) ε4 allele, the main genetic risk factor for sporadic AD. The aggregation of Aβ was inhibited in the presence of CSF and, surprisingly, the effect was more pronounced in APOE ε4 carriers. However, by fractionation of CSF using size exclusion chromatography, it became evident that it was not the ApoE protein itself that conveyed the inhibition, since the retarding species eluted at lower volume, corresponding to a much higher molecular weight, than ApoE monomers. Cholesterol quantification and immunoblotting identified high-density lipoprotein particles in the retarding fractions, indicating that such particles may be responsible for the inhibition. These results add information to the yet unresolved puzzle on how the risk factor of APOE ε4 functions in AD pathogenesis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy