SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Padra M) "

Sökning: WFRF:(Padra M)

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Merikallio, H., et al. (författare)
  • Smoking-associated increase in mucins 1 and 4 in human airways
  • 2020
  • Ingår i: Respiratory research. - : Springer Science and Business Media LLC. - 1465-993X. ; 21:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Rationale Smoking-related chronic obstructive pulmonary disease (COPD) is associated with dysregulated production of mucus. Mucins (MUC) are important both for mucus secretion and epithelial defense. We have examined the distribution of MUC1 and MUC4 in the airway epithelial cells of never-smokers and smokers with and without COPD. Methods Mucosal biopsies and bronchial wash samples were obtained by bronchoscopy from age- and sex-matched COPD-patients (n = 38; GOLD I-II/A-B), healthy never-smokers (n = 40) and current smokers with normal lung function (n = 40) from the Karolinska COSMIC cohort (NCT02627872). Cell-specific expressions of MUC1, MUC4 and regulating factors, i.e., epithelial growth factor receptor (EGFR) 1 and 2, were analyzed by immunohistochemistry. Soluble MUC1 was measured by quantitative immunodetection on slot blot. Results The levels of cell-bound MUC1 expression in basal cells and in soluble MUC1 in bronchial wash were increased in smokers, regardless of airway obstruction. Patients with chronic bronchitis had higher MUC1 expression. The expression of MUC4 in cells with goblet cell phenotype was increased in smokers. The expression of EGFR2, but not that of EGFR1, was higher in never-smokers than in smokers. Conclusions Smoking history and the presence of chronic bronchitis, regardless of airway obstruction, affect both cellular and soluble MUC1 in human airways. Therefore, MUC1 may be a novel marker for smoking- associated airway disease.
  •  
3.
  •  
4.
  •  
5.
  • Pournaras, N., et al. (författare)
  • Glucose Homeostasis in Relation to Neutrophil Mobilization in Smokers with COPD
  • 2022
  • Ingår i: International Journal of Chronic Obstructive Pulmonary Disease. - 1178-2005. ; 17, s. 1179-1194
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Type 2 diabetes mellitus (T2DM) and metabolic syndrome (MetS) are common comorbidities in chronic obstructive pulmonary disease (COPD), but the underlying pathogenic mechanisms are poorly understood. Given that these morbidities all display increased neutrophil mobilization, the current study aimed to address whether glucose homeostasis relates to signs of neutrophil mobilization in COPD. Methods: The study population included healthy non-smokers (HNS) and long-term smokers without (LTS) and with COPD (LTS +COPD). No subject had T2DM or MetS. Serum cotinine was quantified to evaluate current smoking. Capillary blood glucose was measured after overnight fasting and during an oral glucose tolerance test (OGTT). Neutrophils were quantified in blood and bronchoalveolar lavage samples (BAL). The neutrophil-related cytokines IL-36 alpha, -beta and -gamma were quantified (ELISA) along with IL-6, IL-8, INF-gamma and CXCL10 (U-Plex (R)) in plasma and cell-free BAL fluid (BALF). In addition, we quantified neutrophil elastase (ELISA) and net proteinase activity (substrate assay) in BALF. Results: The LTS+COPD group had lower fasting glucose, greater change in glucose during OGTT and higher neutrophil concentrations in BAL and blood compared with HNS. Fasting glucose correlated in a positive manner with blood neutrophil concentration, forced expiratory volume in 1 second/forced vital capacity ratio (FEV1/FVC) and FEV1 (% of predicted) in LTS+COPD. In this group, the concentration of IL-36 alpha in BALF correlated in a negative manner with fasting glucose, blood neutrophil concentration and FEV1, while the CXCL10 concentration in BALF correlated in a negative manner with glucose at the end of OGTT (120 min). We observed no corresponding correlations for neutrophil elastase, net proteinase or gelatinase activity. Conclusion: In smokers with COPD, altered glucose homeostasis is associated with local and systemic signs of increased neutrophil mobilization, but not with local proteinases. This suggests that other specific aspects of neutrophil mobilization constitute pathogenic factors that affect glucose homeostasis in COPD.
  •  
6.
  •  
7.
  • Quintana-Hayashi, Macarena P, et al. (författare)
  • BabA-mediated adherence of pediatric ulcerogenic H-pylori strains to gastric mucins at neutral and acidic pH
  • 2018
  • Ingår i: Virulence. - : Informa UK Limited. - 2150-5594 .- 2150-5608. ; 9:1, s. 1699-1717
  • Tidskriftsartikel (refereegranskat)abstract
    • Helicobacter pylori infection can result in non-ulcer dyspepsia (NUD), peptic ulcer disease (PUD), adenocarcinoma, and gastric lymphoma. H. pylori reside within the gastric mucus layer, mainly composed of mucins carrying an array of glycan structures that can serve as bacterial adhesion epitopes. The aim of the present study was to characterize the binding ability, adhesion modes, and growth of H. pylori strains from pediatric patients with NUD and PUD to gastric mucins. Our results showed an increased adhesion capacity of pediatric PUD H. pylori strains to human and rhesus monkey gastric mucins compared to the NUD strains both at neutral and acidic pH, regardless if the mucins were positive for Lewis b (Le(b)), Sialyl-Lewis x (SLe(x)) or LacdiNAc. In addition to babA positive strains being more common among PUD associated strains, H. pylori babA positive strains bound more avidly to gastric mucins than NUD babA positive strains at acidic pH. Binding to Le(b) was higher among babA positive PUD H. pylori strains compared to NUD strains at neutral, but not acidic, pH. PUD derived babA-knockout mutants had attenuated binding to mucins and Le(b) at acidic and neutral pH, and to SLe(x) and DNA at acidic pH. The results highlight the role of BabA-mediated adherence of pediatric ulcerogenic H. pylori strains, and points to a role for BabA in adhesion to charged structures at acidic pH, separate from its specific blood group binding activity.
  •  
8.
  • Benktander, John, et al. (författare)
  • Effects of Size and Geographical Origin on Atlantic salmon, Salmo salar, Mucin O-Glycan Repertoire
  • 2019
  • Ingår i: Molecular & Cellular Proteomics. - 1535-9476. ; 18:6, s. 1183-1196
  • Tidskriftsartikel (refereegranskat)abstract
    • Diseases cause ethical concerns and economic losses in the Salmonid industry. The mucus layer comprised of highly O-glycosylated mucins is the first contact between pathogens and fish. Mucin glycans govern pathogen adhesion, growth and virulence. The Atlantic salmon O-glycome from a single location has been characterized and the interindividual variation was low. Because interindividual variation is considered a population-based defense, hindering the entire population from being wiped out by a single infection, low interindividual variation among Atlantic salmon may be a concern. Here, we analyzed the O-glycome of 25 Atlantic salmon from six cohorts grown under various conditions from Sweden, Norway and Australia (Tasmania) using mass spectrometry. This expanded the known Atlantic salmon O-glycome by 60% to 169 identified structures. The mucin O-glycosylation was relatively stable over time within a geographical region, but the size of the fish affected skin mucin glycosylation. The skin mucin glycan repertoires from Swedish and Norwegian Atlantic salmon populations were closely related compared with Tasmanian ones, regardless of size and salinity, with differences in glycan size and composition. The internal mucin glycan repertoire also clustered based on geographical origin and into pyloric cecal and distal intestinal groups, regardless of cohort and fish size. Fucosylated structures were more abundant in Tasmanian pyloric caeca and distal intestine mucins compared with Swedish ones. Overall, Tasmanian Atlantic salmon mucins have more O-glycan structures in skin but less in the gastrointestinal tract compared with Swedish fish. Low interindividual variation was confirmed within each cohort. The results can serve as a library for identifying structures of importance for host-pathogen interactions, understanding population differences of salmon mucin glycosylation in resistance to diseases and during breeding and selection of strains. The results could make it possible to predict potential vulnerabilities to diseases and suggest that inter-region breeding may increase the glycan diversity.
  •  
9.
  • Benktander, John, et al. (författare)
  • Gill Mucus and Gill Mucin O-glycosylation in Healthy and Amebic Gill Disease-Affected Atlantic Salmon.
  • 2020
  • Ingår i: Microorganisms. - : MDPI AG. - 2076-2607. ; 8:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Amoebic gill disease (AGD) causes poor performance and death in salmonids. Mucins are mainly comprised by carbohydrates and are main components of the mucus covering the gill. Since glycans regulate pathogen binding and growth, glycosylation changes may affect susceptibility to primary and secondary infections. We investigated gill mucin O-glycosylation from Atlantic salmon with and without AGD using liquid chromatography-mass spectrometry. Gill mucin glycans were larger and more complex, diverse and fucosylated than skin mucins. Confocal microscopy revealed that fucosylated mucus coated sialylated mucus strands in ex vivo gill mucus. Terminal HexNAcs were more abundant among O-glycans from AGD-affected Atlantic salmon, whereas core 1 structures and structures with acidic moieties such as N-acetylneuraminic acid (NeuAc) and sulfate groups were less abundant compared to non-infected fish. The fucosylated and NeuAc-containing O-glycans were inversely proportional, with infected fish on the lower scale of NeuAc abundance and high on fucosylated structures. The fucosylated epitopes were of three types: Fuc-HexNAc-R, Gal-[Fuc-]HexNAc-R and HexNAc-[Fuc-]HexNAc-R. These blood group-like structures could be an avenue to diversify the glycan repertoire to limit infection in the exposed gills. Furthermore, care must be taken when using skin mucus as proxy for gill mucus, as gill mucins are distinctly different from skin mucins.
  •  
10.
  • Benktander, John, et al. (författare)
  • Stress impairs skin barrier function and induces α2-3 linked n-acetylneuraminic acid and core 1 o-glycans on skin mucins in atlantic salmon, salmo salar
  • 2021
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1661-6596 .- 1422-0067. ; 22:3
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2021 by the authors. Licensee MDPI, Basel, Switzerland. The skin barrier consists of mucus, primarily comprising highly glycosylated mucins, and the epithelium. Host mucin glycosylation governs interactions with pathogens and stress is associated with impaired epithelial barrier function. We characterized Atlantic salmon skin barrier function during chronic stress (high density) and mucin O-glycosylation changes in response to acute and chronic stress. Fish held at low (LD: 14–30 kg/m3) and high densities (HD: 50-80 kg/m3) were subjected to acute stress 24 h before sampling at 17 and 21 weeks after start of the experiment. Blood parameters indicated primary and secondary stress responses at both sampling points. At the second sampling, skin barrier function towards molecules was reduced in the HD compared to the LD group (Papp mannitol; p < 0.01). Liquid chromatography–mass spectrometry revealed 81 O-glycan structures from the skin. Fish subjected to both chronic and acute stress had an increased proportion of large O-glycan structures. Overall, four of the O-glycan changes have potential as indicators of stress, especially for the combined chronic and acute stress. Stress thus impairs skin barrier function and induces glycosylation changes, which have potential to both affect interactions with pathogens and serve as stress indicators.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy