SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pahlman I.) "

Sökning: WFRF:(Pahlman I.)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Baghdasaryan, A., et al. (författare)
  • Inhibition of intestinal bile acid absorption improves cholestatic liver and bile duct injury in a mouse model of sclerosing cholangitis
  • 2016
  • Ingår i: Journal of Hepatology. - : Elsevier BV. - 0168-8278. ; 64:3, s. 674-681
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Aims: Approximately 95% of bile acids (BAs) excreted into bile are reabsorbed in the gut and circulate back to the liver for further biliary secretion. Therefore, pharmacological inhibition of the ileal apical sodium-dependent BA transporter (ASBT/SLC10A2) may protect against BA-mediated cholestatic liver and bile duct injury. Methods: Eight week old Mdr2(-/-) (Abcb4(-/-)) mice (model of cholestatic liver injury and sclerosing cholangitis) received either a diet supplemented with A4250 (0.01% w/w) - a highly potent and selective ASBT inhibitor - or a chow diet. Liver injury was assessed biochemically and histologically after 4 weeks of A4250 treatment. Expression profiles of genes involved in BA homeostasis, inflammation and fibrosis were assessed via RT-PCR from liver and ileum homogenates. Intestinal inflammation was assessed by RNA expression profiling and immunohistochemistry. Bile flow and composition, as well as biliary and fecal BA profiles were analyzed after 1 week of ASBT inhibitor feeding. Results: A4250 improved sclerosing cholangitis in Mdr2(-/-) mice and significantly reduced serum alanine aminotransferase, alkaline phosphatase and BAs levels, hepatic expression of proinflammatory (Tnf-alpha, Vcam1, Mcp-1) and pro-fibrogenic (Col1a1, Col1a2) genes and bile duct proliferation (mRNA and immunohistochemistry for cytokeratin 19 (CK19)). Furthermore, A4250 significantly reduced bile flow and biliary BA output, which correlated with reduced Bsep transcription, while Ntcp and Cyp7a1 were induced. Importantly A4250 significantly reduced biliary BA secretion but preserved HCO3- and biliary phospholipid secretion resulting in an increased HCO3-/BA and PL/BA ratio. In addition, A4250 profoundly increased fecal BA excretion without causing diarrhea and altered BA pool composition, resulting in diminished concentrations of primary BAs tauro-beta-muricholic acid and taurocholic acid. Conclusions: Pharmacological ASBT inhibition attenuates cholestatic liver and bile duct injury by reducing biliary BA concentrations in mice. (C) 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
  •  
5.
  • Braekeveldt, N., et al. (författare)
  • Patient-Derived Xenograft Models Reveal Intratumor Heterogeneity and Temporal Stability in Neuroblastoma
  • 2018
  • Ingår i: Cancer Research. - 0008-5472. ; 78:20, s. 5958-5969
  • Tidskriftsartikel (refereegranskat)abstract
    • Patient-derived xenografts (PDX) and the Avatar, a single PDX mirroring an individual patient, are emerging tools in preclinical cancer research. However, the consequences of intratumor heterogeneity for PDX modeling of biomarkers, target identification, and treatment decisions remain under-explored. In this study, we undertook serial passaging and comprehensive molecular analysis of neuroblastoma orthotopic PDXs, which revealed strong intrinsic genetic, transcriptional, and phenotypic stability for more than 2 years. The PDXs showed preserved neuroblastoma-associated gene signatures that correlated with poor clinical outcome in a large cohort of patients with neuroblastoma. Furthermore, we captured spatial intratumor heterogeneity using ten PDXs from a single high-risk patient tumor. We observed diverse growth rates, transcriptional, proteomic, and phosphoproteomic profiles. PDX-derived transcriptional profiles were associated with diverse clinical characteristics in patients with high-risk neuroblastoma. These data suggest that high-risk neuroblastoma contains elements of both temporal stability and spatial intratumor heterogeneity, the latter of which complicates clinical translation of personalized PDX-Avatar studies into preclinical cancer research. Significance: These findings underpin the complexity of PDX modeling as a means to advance translational applications against neuroblastoma. (C) 2018 AACR.
  •  
6.
  •  
7.
  • Ekberg, Henrik, et al. (författare)
  • The specific monocarboxylate transporter-1 (MCT-1) inhibitor, AR-C117977, induces donor-specific suppression, reducing acute and chronic allograft rejection in the rat
  • 2007
  • Ingår i: Transplantation. - : Ovid Technologies (Wolters Kluwer Health). - 1534-6080 .- 0041-1337. ; 84:9, s. 1191-1199
  • Tidskriftsartikel (refereegranskat)abstract
    • Background. In a search for immunosuppressive drugs having novel mechanisms, monocarboxylate transporter (MCT-1) inhibitors were identified that markedly inhibited immune responses. Here, we report the effects of AR-C117977, a potent MCT-1 inhibitor, on alloimmune responses in the rat. Methods. In vitro activity was determined in a rat mixed lymphocyte response (MLR). In vivo activity was tested in a graft versus host response (GVHR) and in both high (DA to PVG) and low (PVG to DA) responder cardiac allograft models. To assess induction of donor-specific suppression recipients of allogeneic hearts surviving longer than 100 days received a second transplant either of the same donor strain or a third-party donor strain. Effects on chronic graft rejection were assessed histologically by evaluating vasculopathy in long-term surviving grafts and in an obliterative bronchiolitis (013) model. Results. AR-C117977 inhibited the rat MLR and was more potent than cyclosporin A (CsA). In the rat GVHR model, AR-C117977 gave a dose-related inhibition. In the high responder cardiac allograft model, graft survival in excess of 100 days was achieved with AR-C117977 compared with 20 days with CsA and all the long-term survivors exhibited donor-specific suppression on retransplantation. In the low responder model, both AR-C117977 and CsA induced survival in excess of 100 days. Histology of the long-term surviving grafts suggested reduced vasculopathy associated with chronic rejection. Furthermore, AR-C117977 inhibited the occlusion of transplanted trachea in a 013 model. Conclusion. This report describes a MCT-1 specific inhibitor having immunosuppressive activity on alloinimune responses and inducing donor-specific suppression.
  •  
8.
  •  
9.
  • Hossein Khademi, S. M., et al. (författare)
  • Genomic and phenotypic evolution of achromobacter xylosoxidans during chronic airway infections of patients with cystic fibrosis
  • 2021
  • Ingår i: mSystems. - 2379-5077. ; 6:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Bacterial pathogens evolve during chronic colonization of the human host by selection for pathoadaptive mutations. One of the emerging and understudied bacterial species causing chronic airway infections in patients with cystic fibrosis (CF) is Achromobacter xylosoxidans. It can establish chronic infections in patients with CF, but the genetic and phenotypic changes associated with adaptation during these infections are not completely understood. In this study, we analyzed the wholegenome sequences of 55 clinical A. xylosoxidans isolates longitudinally collected from the sputum of 6 patients with CF. Four genes encoding regulatory proteins and two intergenic regions showed convergent evolution, likely driven by positive selection for pathoadaptive mutations, across the different clones of A. xylosoxidans. Most of the evolved isolates had lower swimming motility and were resistant to multiple classes of antibiotics, while fewer of the evolved isolates had slower growth or higher biofilm production than the first isolates. Using a genome-wide association study method, we identified several putative genetic determinants of biofilm formation, motility and b-lactam resistance in this pathogen. With respect to antibiotic resistance, we discovered that a combination of mutations in pathoadaptive genes (phoQ and bigR) and two other genes encoding regulatory proteins (spoT and cpxA) were associated with increased resistance to meropenem and ceftazidime. Altogether, our results suggest that genetic changes within regulatory loci facilitate within-host adaptation of A. xylosoxidans and the emergence of adaptive phenotypes, such as antibiotic resistance or biofilm formation. IMPORTANCE A thorough understanding of bacterial pathogen adaptation is essential for the treatment of chronic bacterial infections. One unique challenge in the analysis and interpretation of genomics data is identifying the functional impact of mutations accumulated in the bacterial genome during colonization in the human host. Here, we investigated the genomic and phenotypic evolution of A. xylosoxidans in chronic airway infections of patients with CF and identified several mutations associated with the phenotypic evolution of this pathogen using genome-wide associations. Identification of phenotypes under positive selection and the associated mutations can enlighten the adaptive processes of this emerging pathogen in human infections and pave the way for novel therapeutic interventions.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy