SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Paijmans A.) "

Sökning: WFRF:(Paijmans A.)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Stoffel, M. A., et al. (författare)
  • Demographic histories and genetic diversity across pinnipeds are shaped by human exploitation, ecology and life-history
  • 2018
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • A central paradigm in conservation biology is that population bottlenecks reduce genetic diversity and population viability. In an era of biodiversity loss and climate change, understanding the determinants and consequences of bottlenecks is therefore an important challenge. However, as most studies focus on single species, the multitude of potential drivers and the consequences of bottlenecks remain elusive. Here, we combined genetic data from over 11,000 individuals of 30 pinniped species with demographic, ecological and life history data to evaluate the consequences of commercial exploitation by 18th and 19th century sealers. We show that around one third of these species exhibit strong signatures of recent population declines. Bottleneck strength is associated with breeding habitat and mating system variation, and together with global abundance explains much of the variation in genetic diversity across species. Overall, bottleneck intensity is unrelated to IUCN status, although the three most heavily bottlenecked species are endangered. Our study reveals an unforeseen interplay between human exploitation, animal biology, demographic declines and genetic diversity.
  •  
3.
  •  
4.
  • Clark, M. S., et al. (författare)
  • Multi-omics for studying and understanding polar life
  • 2023
  • Ingår i: Nature Communications. - : NATURE PORTFOLIO. - 2041-1723. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • Polar ecosystems are experiencing amongst the most rapid rates of regional warming on Earth. Here, we discuss ‘omics’ approaches to investigate polar biodiversity, including the current state of the art, future perspectives and recommendations. We propose a community road map to generate and more fully exploit multi-omics data from polar organisms. These data are needed for the comprehensive evaluation of polar biodiversity and to reveal how life evolved and adapted to permanently cold environments with extreme seasonality. We argue that concerted action is required to mitigate the impact of warming on polar ecosystems via conservation efforts, to sustainably manage these unique habitats and their ecosystem services, and for the sustainable bioprospecting of novel genes and compounds for societal gain.
  •  
5.
  • Barlow, Axel, et al. (författare)
  • Middle Pleistocene genome calibrates a revised evolutionary history of extinct cave bears
  • 2021
  • Ingår i: Current Biology. - : Elsevier BV. - 0960-9822 .- 1879-0445. ; 31:8, s. 1771-1779
  • Tidskriftsartikel (refereegranskat)abstract
    • Palaeogenomes provide the potential to study evolutionary processes in real time, but this potential is limited by our ability to recover genetic data over extended timescales.1 As a consequence, most studies so far have focused on samples of Late Pleistocene or Holocene age, which covers only a small part of the history of many clades and species. Here, we report the recovery of a low coverage palaeogenome from the petrous bone of a 360,000 year old cave bear from Kudaro 1 cave in the Caucasus Mountains. Analysis of this genome alongside those of several Late Pleistocene cave bears reveals widespread mito-nuclear discordance in this group. Using the time interval between Middle and Late Pleistocene cave bear genomes, we directly estimate ursid nuclear and mitochondrial substitution rates to calibrate their respective phylogenies. This reveals postdivergence mitochondrial transfer as the dominant factor explaining their mito-nuclear discordance. Interestingly, these transfer events were not accompanied by large-scale nuclear introgression. However, we do detect additional instances of nuclear admixture among other cave bear lineages, and between cave bears and brown bears, which are not associated with mitochondrial exchange. Genomic data obtained from the Middle Pleistocene cave bear petrous bone has thus facilitated a revised evolutionary history of this extinct megafaunal group. Moreover, it suggests that petrous bones may provide a means of extending both the magnitude and time depth of palaeogenome retrieval over substantial portions of the evolutionary histories of many mammalian clades.
  •  
6.
  • Grosser, Stefanie, et al. (författare)
  • Fur seal microbiota are shaped by the social and physical environment, show mother-offspring similarities and are associated with host genetic quality
  • 2019
  • Ingår i: Molecular Ecology. - : John Wiley & Sons. - 0962-1083 .- 1365-294X. ; 28:9, s. 2406-2422
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite an increasing appreciation of the importance of host-microbe interactions in ecological and evolutionary processes, the factors shaping microbial communities in wild populations remain poorly understood. We therefore exploited a natural experiment provided by two adjacent Antarctic fur seal (Arctocephalus gazella) colonies of high and low social density and combined 16S rRNA metabarcoding with microsatellite profiling of mother-offspring pairs to investigate environmental and genetic influences on skin microbial communities. Seal-associated bacterial communities differed profoundly between the two colonies, despite the host populations themselves being genetically undifferentiated. Consistent with the hypothesis that social stress depresses bacterial diversity, we found that microbial alpha diversity was significantly lower in the high-density colony. Seals from one of the colonies that contained a stream also carried a subset of freshwater-associated bacteria, indicative of an influence of the physical environment. Furthermore, mothers and their offspring shared similar microbial communities, in support of the notion that microbes may facilitate mother-offspring recognition. Finally, a significant negative association was found between bacterial diversity and heterozygosity, a measure of host genetic quality. Our study thus reveals a complex interplay between environmental and host genetic effects, while also providing empirical support for the leash model of host control, which posits that bacterial communities are driven not only by bottom-up species interactions, but also by top-down host regulation. Taken together, our findings have broad implications for understanding host-microbe interactions as well as prokaryotic diversity in general.
  •  
7.
  • Hempel, Elisabeth, et al. (författare)
  • Identifying the true number of specimens of the extinct blue antelope (Hippotragus leucophaeus)
  • 2021
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11:2100
  • Tidskriftsartikel (refereegranskat)abstract
    • Native to southern Africa, the blue antelope (Hippotragus leucophaeus) is the only large African mammal species known to have become extinct in historical times. However, it was poorly documented prior to its extinction ~ 1800 AD, and many of the small number of museum specimens attributed to it are taxonomically contentious. This places limitations on our understanding of its morphology, ecology, and the mechanisms responsible for its demise. We retrieved genetic information from ten of the sixteen putative blue antelope museum specimens using both shotgun sequencing and mitochondrial genome target capture in an attempt to resolve the uncertainty surrounding the identification of these specimens. We found that only four of the ten investigated specimens, and not a single skull, represent the blue antelope. This indicates that the true number of historical museum specimens of the blue antelope is even smaller than previously thought, and therefore hardly any reference material is available for morphometric, comparative and genetic studies. Our study highlights how genetics can be used to identify rare species in natural history collections where other methods may fail or when records are scarce. Additionally, we present an improved mitochondrial reference genome for the blue antelope as well as one complete and two partial mitochondrial genomes. A first analysis of these mitochondrial genomes indicates low levels of maternal genetic diversity in the ‘museum population’, possibly confirming previous results that blue antelope population size was already low at the time of the European colonization of South Africa.
  •  
8.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy