SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Paik Young Ki) "

Sökning: WFRF:(Paik Young Ki)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Horvatovich, Peter, et al. (författare)
  • Quest for Missing Proteins : Update 2015 on Chromosome-Centric Human Proteome Project
  • 2015
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 14:9, s. 3415-3431
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • This paper summarizes the recent activities of the Chromosome-Centric Human Proteome Project (C-HPP) consortium, which develops new technologies to identify yet-to-be annotated proteins (termed "missing proteins") in biological samples that lack sufficient experimental evidence at the protein level for confident protein identification. The C-HPP also aims to identify new protein forms that may be caused by genetic variability, post-translational modifications, and alternative splicing. Proteogenomic data integration forms the basis of the C-HPP's activities; therefore, we have summarized some of the key approaches and their roles in the project. We present new analytical technologies that improve the chemical space and lower detection limits coupled to bioinformatics tools and some publicly available resources that can be used to improve data analysis or support the development of analytical assays. Most of this paper's content has been compiled from posters, slides, and discussions presented in the series of C-HPP workshops held during 2014. All data (posters, presentations) used are available at the C-HPP Wild (http://c-hpp.webhosting.rug.nl/) and in the Supporting Information.
  •  
3.
  • Liu, Suli, et al. (författare)
  • A Chromosome-centric Human Proteome Project (C-HPP) to Characterize the Sets of Proteins Encoded in Chromosome 17
  • 2013
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 12:1, s. 49-61
  • Tidskriftsartikel (refereegranskat)abstract
    • We report progress assembling the parts list for chromosome 17 and illustrate the various processes that we have developed to integrate available data from diverse genomic and proteomic knowledge bases. As primary resources, we have used GPMDB, neXtProt, PeptideAtlas, Human Protein Atlas (HPA), and GeneCards. All sites share the common resource of Ensembl for the genome modeling information. We have defined the chromosome 17 parts list with the following information: 1169 protein-coding genes, the numbers of proteins confidently identified by various experimental approaches as documented in GPMDB, neXtProt, PeptideAtlas, and HPA, examples of typical data sets obtained by RNASeq and proteomic studies of epithelial derived tumor cell lines (disease proteome) and a normal proteome (peripheral mononuclear cells), reported evidence of post-translational modifications, and examples of alternative splice variants (ASVs). We have constructed a list of the 59 "missing" proteins as well as 201 proteins that have inconclusive mass spectrometric (MS) identifications. In this report we have defined a process to establish a baseline for the incorporation of new evidence on protein identification and characterization as well as related information from transcriptome analyses. This initial list of "missing" proteins that will guide the selection of appropriate samples for discovery studies as well as antibody reagents. Also we have illustrated the significant diversity of protein variants (including post-translational modifications, PTMs) using regions on chromosome 17 that contain important oncogenes. We emphasize the need for mandated deposition of proteomics data in public databases, the further development of improved PTM, ASV, and single nucleotide variant (SNV) databases, and the construction of Web sites that can integrate and regularly update such information. In addition, we describe the distribution of both clustered and scattered sets of protein families on the chromosome. Since chromosome 17 is rich in cancer-associated genes, we have focused the clustering of cancer-associated genes in such genomic regions and have used the ERBB2 amplicon as an example of the value of a proteogenomic approach in which one integrates transcriptomic with proteomic information and captures evidence of coexpression through coordinated regulation.
  •  
4.
  •  
5.
  • Paik, Young-Ki, et al. (författare)
  • Standard Guidelines for the Chromosome-Centric Human Proteome Project
  • 2012
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 11:4, s. 2005-2013
  • Tidskriftsartikel (refereegranskat)abstract
    • The objective of the international Chromosome-Centric Human Proteome Project (C-HPP) is to map and annotate all proteins encoded by the genes on each human chromosome. The C-FIPP consortium was established to organize a collaborative network among the research teams responsible for protein mapping of individual chromosomes and to identify compelling biological and genetic mechanisms influencing colocated genes and their protein products. The C-HPP aims to foster the development of proteome analysis and integration of the findings from related molecular -omics technology platforms through collaborations among universities, industries, and private research groups. The C-HPP consortium leadership has elicited broad input for standard guidelines to manage these international efforts more efficiently by mobilizing existing resources and collaborative networks. The C-HPP guidelines set out the collaborative consensus of the C-HPP teams, introduce topics associated with experimental approaches, data production, quality control, treatment, and transparency of data, governance of the consortium, and collaborative benefits. A companion approach for the Biology and Disease-Driven HPP (B/D-HPP) component of the Human Proteome Project is currently being organized, building upon the Human Proteome Organization's organ-based and biofluid-based initiatives (www.hupo.org/research). The common application of these guidelines in the participating laboratories is expected to facilitate the goal of a comprehensive analysis of the human proteome.
  •  
6.
  • Adhikari, Subash, et al. (författare)
  • A high-stringency blueprint of the human proteome
  • 2020
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1
  • Forskningsöversikt (refereegranskat)abstract
    • The Human Proteome Organization (HUPO) launched the Human Proteome Project (HPP) in 2010, creating an international framework for global collaboration, data sharing, quality assurance and enhancing accurate annotation of the genome-encoded proteome. During the subsequent decade, the HPP established collaborations, developed guidelines and metrics, and undertook reanalysis of previously deposited community data, continuously increasing the coverage of the human proteome. On the occasion of the HPP’s tenth anniversary, we here report a 90.4% complete high-stringency human proteome blueprint. This knowledge is essential for discerning molecular processes in health and disease, as we demonstrate by highlighting potential roles the human proteome plays in our understanding, diagnosis and treatment of cancers, cardiovascular and infectious diseases.
  •  
7.
  • Legrain, Pierre, et al. (författare)
  • The Human Proteome Project : Current State and Future Direction
  • 2011
  • Ingår i: Molecular & Cellular Proteomics. - 1535-9476 .- 1535-9484. ; 10:7
  • Tidskriftsartikel (refereegranskat)abstract
    • After the successful completion of the Human Genome Project, the Human Proteome Organization has recently officially launched a global Human Proteome Project (HPP), which is designed to map the entire human protein set. Given the lack of protein-level evidence for about 30% of the estimated 20,300 protein-coding genes, a systematic global effort will be necessary to achieve this goal with respect to protein abundance, distribution, subcellular localization, interaction with other biomolecules, and functions at specific time points. As a general experimental strategy, HPP research groups will use the three working pillars for HPP: mass spectrometry, antibody capture, and bioinformatics tools and knowledge bases. The HPP participants will take advantage of the output and cross-analyses from the ongoing Human Proteome Organization initiatives and a chromosome-centric protein mapping strategy, termed C-HPP, with which many national teams are currently engaged. In addition, numerous biologically driven and disease-oriented projects will be stimulated and facilitated by the HPP. Timely planning with proper governance of HPP will deliver a protein parts list, reagents, and tools for protein studies and analyses, and a stronger basis for personalized medicine. The Human Proteome Organization urges each national research funding agency and the scientific community at large to identify their preferred pathways to participate in aspects of this highly promising project in a HPP consortium of funders and investigators.
  •  
8.
  •  
9.
  • Omenn, Gilbert S., et al. (författare)
  • Progress Identifying and Analyzing the Human Proteome : 2021 Metrics from the HUPO Human Proteome Project
  • 2021
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 20:12, s. 5227-5240
  • Tidskriftsartikel (refereegranskat)abstract
    • The 2021 Metrics of the HUPO Human Proteome Project (HPP) show that protein expression has now been credibly detected (neXtProt PE1 level) for 18 357 (92.8%) of the 19 778 predicted proteins coded in the human genome, a gain of 483 since 2020 from reports throughout the world reanalyzed by the HPP. Conversely, the number of neXtProt PE2, PE3, and PE4 missing proteins has been reduced by 478 to 1421. This represents remarkable progress on the proteome parts list. The utilization of proteomics in a broad array of biological and clinical studies likewise continues to expand with many important findings and effective integration with other omics platforms. We present highlights from the Immunopeptidomics, Glycoproteomics, Infectious Disease, Cardiovascular, MusculoSkeletal, Liver, and Cancers B/D-HPP teams and from the Knowledge-base, Mass Spectrometry, Antibody Profiling, and Pathology resource pillars, as well as ethical considerations important to the clinical utilization of proteomics and protein biomarkers.
  •  
10.
  • Omenn, Gilbert S., et al. (författare)
  • Progress on Identifying and Characterizing the Human Proteome : 2018 Metrics from the HUPO Human Proteome Project
  • 2018
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 17:12, s. 4031-4041
  • Tidskriftsartikel (refereegranskat)abstract
    • The Human Proteome Project (HPP) annually reports on progress throughout the field in credibly identifying and characterizing the human protein parts list and making proteomics an integral part of multiomics studies in medicine and the life sciences. NeXtProt release 2018-01-17, the baseline for this sixth annual HPP special issue of the Journal of Proteome Research, contains 17 470 PE1 proteins, 89% of all neXtProt predicted PE1-4 proteins, up from 17 008 in release 2017-01-23 and 13 975 in release 2012-02-24. Conversely, the number of neXtProt PE2,3,4 missing proteins has been reduced from 2949 to 2579 to 2186 over the past two years. Of the PEI proteins, 16 092 are based on mass spectrometry results, and 1378 on other kinds of protein studies, notably protein protein interaction findings. PeptideAtlas has 15 798 canonical proteins, up 625 over the past year, including 269 from SUMOylation studies. The largest reason for missing proteins is low abundance. Meanwhile, the Human Protein Atlas has released its Cell Atlas, Pathology Atlas, and updated Tissue Atlas, and is applying recommendations from the International Working Group on Antibody Validation. Finally, there is progress using the quantitative multiplex organ-specific popular proteins targeted proteomics approach in various disease categories.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12
Typ av publikation
tidskriftsartikel (11)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (9)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Omenn, Gilbert S. (12)
Paik, Young Ki (12)
Deutsch, Eric W. (9)
Uhlén, Mathias (6)
Aebersold, Ruedi (6)
Lane, Lydie (5)
visa fler...
Corrales, Fernando J ... (5)
Bairoch, Amos (5)
He, Fuchu (5)
Baker, Mark S. (5)
Overall, Christopher ... (4)
Lindskog, Cecilia (3)
Cristea, Ileana M. (3)
Van Eyk, Jennifer E. (3)
Srivastava, Sudhir (3)
Bandeira, Nuno (3)
Moritz, Robert L. (3)
Schwenk, Jochen M. (2)
Nice, Edouard C. (2)
Pennington, Stephen ... (2)
Domont, Gilberto B. (2)
Vizcaino, Juan Anton ... (2)
Lundberg, Emma (2)
Snyder, Michael P. (2)
Vegvari, Akos (1)
Celis, Julio E. (1)
Levander, Fredrik (1)
Adhikari, Subash (1)
Chan, Daniel W. (1)
Waddington, James C. (1)
Justice, Joshua L. (1)
LaBaer, Joshua (1)
Rodriguez, Henry (1)
Kostrzewa, Markus (1)
Ping, Peipei (1)
Gundry, Rebekah L. (1)
Stewart, Peter (1)
Srivastava, Sanjeeva (1)
Nogueira, Fabio C.S. (1)
Vandenbrouck, Yves (1)
Lam, Maggie P.Y. (1)
Wennersten, Sara (1)
Wilkins, Marc (1)
Marko-Varga, Gyorgy (1)
Weintraub, Susan T. (1)
Pineau, Charles (1)
Kusebauch, Ulrike (1)
Ahn, Seong Beom (1)
Palmblad, Magnus (1)
Prasad, T. S. Keshav ... (1)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (8)
Lunds universitet (8)
Uppsala universitet (3)
Språk
Engelska (12)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (10)
Teknik (4)
Medicin och hälsovetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy