SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Palace M.) "

Sökning: WFRF:(Palace M.)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Burke, S. A., et al. (författare)
  • Long-Term Measurements of Methane Ebullition From Thaw Ponds
  • 2019
  • Ingår i: Journal of Geophysical Research - Biogeosciences. - 2169-8953 .- 2169-8961. ; 124:7, s. 2208-2221
  • Tidskriftsartikel (refereegranskat)abstract
    • Arctic regions are experiencing rapid warming, leading to permafrost thaw and formation of numerous water bodies. Although small ponds in particular are considered hot spots for methane (CH4) release, long-term studies of CH4 efflux from these surfaces are rare. We have collected an extensive data set of CH4 ebullition (bubbling) measurements from eight small thaw ponds (<0.001 km(2)) with different physical and hydrological characteristics over four summer seasons, the longest set of observations from thaw ponds to date. The measured fluxes were highly variable with an average of 20.0 mg CH4 . m(-2) . day(-1) (median: 4.1 mg CH4 . m(-2) . day(-1), n = 2,063) which is higher than that of most nearby lakes. The ponds were categorized into four types based on clear and significant differences in bubble flux. We found that the amount of CH4 released as bubbles from ponds was very weakly correlated with environmental variables, like air temperature and atmospheric pressure, and was potentially more related to differences in physical characteristics of the ponds. Using our measured average daily bubble flux plus the available literature, we estimate circumpolar thaw ponds <0.001 km(2) in size to emit between 0.2 and 1.0 Tg of CH4 through ebullition. Our findings exemplify the importance of high-frequency measurements over long study periods in order to adequately capture the variability of these water bodies. Through the expansion of current spatial and temporal monitoring efforts, we can increase our ability to estimate CH4 emissions from permafrost pond ecosystems now and in the future.
  •  
3.
  •  
4.
  • Damato, V, et al. (författare)
  • Rituximab abrogates aquaporin-4-specific germinal center activity in patients with neuromyelitis optica spectrum disorders
  • 2022
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 1091-6490. ; 119:24, s. e2121804119-
  • Tidskriftsartikel (refereegranskat)abstract
    • By studying paired blood and deep cervical lymph node samples from patients with neuromyelitis optica spectrum disorders, our data provide evidence for a germinal center–based generation of aquaporin-4 antibodies. Frequent serum aquaporin-4 immunoglobulin Ms (IgMs) and shifts in IgG subclasses were observed alongside preferential synthesis of aquaporin-4 IgGs and aquaporin-4–reactive B cells within lymph nodes. Both intranodal synthesis of aquaporin-4 antibodies and intranodal aquaporin-4–reactive B cells were robustly eliminated with rituximab administration. This study systematically explores lymph nodes that drain the central nervous system (CNS) in patients with CNS autoimmunity and offers a potential explanation as to why rituximab is clinically highly efficacious in autoantibody-mediated diseases despite no accompanying reduction in serum autoantibody levels.
  •  
5.
  • Guergueltcheva, V., et al. (författare)
  • Congenital myasthenic syndrome with tubular aggregates caused by GFPT1 mutations
  • 2012
  • Ingår i: Journal of Neurology. - : Springer Science and Business Media LLC. - 0340-5354 .- 1432-1459. ; 259:5, s. 838-850
  • Tidskriftsartikel (refereegranskat)abstract
    • Congenital myasthenic syndrome (CMS) is a clinically and genetically heterogeneous group of inherited disorders of the neuromuscular junction. A difficult to diagnose subgroup of CMS is characterised by proximal muscle weakness and fatigue while ocular and facial involvement is only minimal. DOK7 mutations have been identified as causing the disorder in about half of the cases. More recently, using classical positional cloning, we have identified mutations in a previously unrecognised CMS gene, GFPT1, in a series of DOK7-negative cases. However, detailed description of clinical features of GFPT1 patients has not been reported yet. Here we describe the clinical picture of 24 limb-girdle CMS (LG-CMS) patients and pathological findings of 18 of them, all carrying GFPT1 mutations. Additional patients with CMS, but without tubular aggregates, and patients with non-fatigable weakness with tubular aggregates were also screened. In most patients with GFPT1 mutations, onset of the disease occurs in the first decade of life with characteristic limb-girdle weakness and fatigue. A common feature was beneficial and sustained response to acetylcholinesterase inhibitor treatment. Most of the patients who had a muscle biopsy showed tubular aggregates in myofibers. Analysis of endplate morphology in one of the patients revealed unspecific abnormalities. Our study delineates the phenotype of CMS associated with GFPT1 mutations and expands the understanding of neuromuscular junction disorders. As tubular aggregates in context of a neuromuscular transmission defect appear to be highly indicative, we suggest calling this condition congenital myasthenic syndrome with tubular aggregates (CMS-TA).
  •  
6.
  •  
7.
  • Senderek, J, et al. (författare)
  • Hexosamine Biosynthetic Pathway Mutations Cause Neuromuscular Transmission Defect
  • 2011
  • Ingår i: American journal of human genetics. - 0002-9297. ; 88:2, s. 162-172
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuromuscular junctions (NMJs) are synapses that transmit impulses from motor neurons to skeletal muscle fibers leading to muscle contraction. Study of hereditary disorders of neuromusculartransmission, termed congenital myasthenic syndromes (CMS), has helped elucidate fundamental processes influencing development and function of the nerve-muscle synapse. Using genetic linkage, we find 18 different biallelic mutations in the gene encoding glutamine-fructose-6-phosphate transaminase 1 (GFPT1) in 13 unrelated families with an autosomal recessive CMS. Consistent with these data, downregulation of the GFPT1 ortholog gfpt1 in zebrafish embryos altered muscle fiber morphology and impaired neuromuscular junction development. GFPT1 is the key enzyme of the hexosaminepathway yielding the amino sugar UDP-N-acetylglucosamine, an essential substrate for protein glycosylation. Our findings provide further impetus to study the glycobiology of NMJ and synapses in general.
  •  
8.
  • Varner, Ruth K., et al. (författare)
  • Permafrost thaw driven changes in hydrology and vegetation cover increase trace gas emissions and climate forcing in Stordalen Mire from 1970 to 2014
  • 2022
  • Ingår i: Philosophical Transactions. Series A. - : The Royal Society. - 1364-503X .- 1471-2962. ; 380:2215
  • Tidskriftsartikel (refereegranskat)abstract
    • Permafrost thaw increases active layer thickness, changes landscape hydrology and influences vegetation species composition. These changes alter belowground microbial and geochemical processes, affecting production, consumption and net emission rates of climate forcing trace gases. Net carbon dioxide (CO2) and methane (CH4) fluxes determine the radiative forcing contribution from these climate-sensitive ecosystems. Permafrost peatlands may be a mosaic of dry frozen hummocks, semi-thawed or perched sphagnum dominated areas, wet permafrost-free sedge dominated sites and open water ponds. We revisited estimates of climate forcing made for 1970 and 2000 for Stordalen Mire in northern Sweden and found the trend of increasing forcing continued into 2014. The Mire continued to transition from dry permafrost to sedge and open water areas, increasing by 100% and 35%, respectively, over the 45-year period, causing the net radiative forcing of Stordalen Mire to shift from negative to positive. This trend is driven by transitioning vegetation community composition, improved estimates of annual CO2 and CH4 exchange and a 22% increase in the IPCC's 100-year global warming potential (GWP_100) value for CH4. These results indicate that discontinuous permafrost ecosystems, while still remaining a net overall sink of C, can become a positive feedback to climate change on decadal timescales.This article is part of a discussion meeting issue ‘Rising methane: is warming feeding warming? (part 2)’.
  •  
9.
  • Kuhn, McKenzie A., et al. (författare)
  • Controls on Stable Methane Isotope Values in Northern Peatlands and Potential Shifts in Values Under Permafrost Thaw Scenarios
  • 2024
  • Ingår i: Journal of Geophysical Research - Biogeosciences. - : American Geophysical Union (AGU). - 2169-8953 .- 2169-8961. ; 129:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Northern peatlands are a globally significant source of methane (CH4), and emissions are projected to increase due to warming and permafrost loss. Understanding the microbial mechanisms behind patterns in CH4 production in peatlands will be key to predicting annual emissions changes, with stable carbon isotopes (δ13C-CH4) being a powerful tool for characterizing these drivers. Given that δ13C-CH4 is used in top-down atmospheric inversion models to partition sources, our ability to model CH4 production pathways and associated δ13C-CH4 values is critical. We sought to characterize the role of environmental conditions, including hydrologic and vegetation patterns associated with permafrost thaw, on δ13C-CH4 values from high-latitude peatlands. We measured porewater and emitted CH4 stable isotopes, pH, and vegetation composition from five boreal-Arctic peatlands. Porewater δ13C-CH4 was strongly associated with peatland type, with δ13C enriched values obtained from more minerotrophic fens (−61.2 ± 9.1‰) compared to permafrost-free bogs (−74.1 ± 9.4‰) and raised permafrost bogs (−81.6 ± 11.5‰). Variation in porewater δ13C-CH4 was best explained by sedge cover, CH4 concentration, and the interactive effect of peatland type and pH (r2 = 0.50, p < 0.001). Emitted δ13C-CH4 varied greatly but was positively correlated with porewater δ13C-CH4. We calculated a mixed atmospheric δ13C-CH4 value for northern peatlands of −65.3 ± 7‰ and show that this value is more sensitive to landscape drying than wetting under permafrost thaw scenarios. Our results suggest northern peatland δ13C-CH4 values are likely to shift in the future which has important implications for source partitioning in atmospheric inversion models.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy