SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Palecek E) "

Sökning: WFRF:(Palecek E)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lorek, Eleonora, et al. (författare)
  • High-Order Harmonic Generation and Plasmonics
  • 2015
  • Ingår i: Nano-Structures for Optics and Photonics : Optical Strategies for Enhancing Sensing, Imaging, Communication and Energy Conversion - Optical Strategies for Enhancing Sensing, Imaging, Communication and Energy Conversion. - Dordrecht : Springer Netherlands. - 9789401791328 - 9789401791335 ; , s. 531-531
  • Bokkapitel (refereegranskat)abstract
    • Attosecond pulses allow for imaging of very fast processes, like electron dynamics. Stockman et al. suggested to use these pulses in connection with a Photoemission electron microscope (PEEM) to study the ultrafast dynamics of plasmons (Stockman et al. Nat Photonics 1:539–544, 2007). For efficient plasmon studies, the repetition rate of the attosecond pulses used needs to be higher than a few kHz (Mikkelsen et al. Rev Sci Instrum 80:123703, 2009). Attosecond pulses are produced in a process called high-order harmonic generation (HHG) (Paul et al. Science 292(5522):1689–1692, 2001; Ferray et al. J Phys B At Mol Opt Phys 21:L31–L35, 1988). In HHG, a strong laser field allows an electron to tunnel out, get accelerated and recombine with a high kinetic energy resulting in extreme ultraviolet attosecond pulses. The large intensity needed to drive the process normally limits the repetition rate of the laser to a few kHz. Using a tight focusing scheme (Heyl et al. Phys Rev Lett 107:033903, 2011; Vernaleken et al. Opt Lett 36:3428–3430, 2011), we, however, generate harmonics at a repetition rate of 200 kHz, both with a commercial turn-key laser and with an advanced laser system. Suitable nanostructures for a strong field enhancement are produced in-house and the field enhancement is studied with PEEM in a non-time resolved manner. With high-order harmonics produced at a high repetition rate, we hope to be able to follow also the ultrafast dynamics of plasmons in these structures (Mårsell et al. Ann der Phys 525:162–170, 2013).
  •  
2.
  •  
3.
  • Ferapontova, Elena, et al. (författare)
  • Direct electrochemistry of proteins and enzymes
  • 2005
  • Ingår i: Electrochemistry of nucleic acids and proteins : towards electrochemical sensors for genomic and proteomics. - 044452150X
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Not available.
  •  
4.
  • Orsborne, Sarah R.E., et al. (författare)
  • Photogeneration of Spin Quintet Triplet-Triplet Excitations in DNA-Assembled Pentacene Stacks
  • 2023
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society. - 0002-7863 .- 1520-5126. ; 145:9, s. 5431-5438
  • Tidskriftsartikel (refereegranskat)abstract
    • Singlet fission (SF), an exciton-doubling process observed in certain molecular semiconductors where two triplet excitons are generated from one singlet exciton, requires correctly tuned intermolecular coupling to allow separation of the two triplets to different molecular units. We explore this using DNA-encoded assembly of SF-capable pentacenes into discrete π-stacked constructs of defined size and geometry. Precise structural control is achieved via a combination of the DNA duplex formation between complementary single-stranded DNA and the local molecular geometry that directs the SF chromophores into a stable and predictable slip-stacked configuration, as confirmed by molecular dynamics (MD) modeling. Transient electron spin resonance spectroscopy revealed that within these DNA-assembled pentacene stacks, SF evolves via a bound triplet pair quintet state, which subsequently converts into free triplets. SF evolution via a long-lived quintet state sets specific requirements on intermolecular coupling, rendering the quintet spectrum and its zero-field-splitting parameters highly sensitive to intermolecular geometry. We have found that the experimental spectra and zero-field-splitting parameters are consistent with a slight systematic strain relative to the MD-optimized geometry. Thus, the transient electron spin resonance analysis is a powerful tool to test and refine the MD-derived structure models. DNA-encoded assembly of coupled semiconductor molecules allows controlled construction of electronically functional structures, but brings with it significant dynamic and polar disorders. Our findings here of efficient SF through quintet states demonstrate that these conditions still allow efficient and controlled semiconductor operation and point toward future opportunities for constructing functional optoelectronic systems.
  •  
5.
  • Park, Tae-Eun, et al. (författare)
  • Hypoxia-enhanced Blood-Brain Barrier Chip recapitulates human barrier function and shuttling of drugs and antibodies
  • 2019
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • The high selectivity of the human blood-brain barrier (BBB) restricts delivery of many pharmaceuticals and therapeutic antibodies to the central nervous system. Here, we describe an in vitro microfluidic organ-on-a-chip BBB model lined by induced pluripotent stem cell-derived human brain microvascular endothelium interfaced with primary human brain astrocytes and pericytes that recapitulates the high level of barrier function of the in vivo human BBB for at least one week in culture. The endothelium expresses high levels of tight junction proteins and functional efflux pumps, and it displays selective transcytosis of peptides and antibodies previously observed in vivo. Increased barrier functionality was accomplished using a developmentally-inspired induction protocol that includes a period of differentiation under hypoxic conditions. This enhanced BBB Chip may therefore represent a new in vitro tool for development and validation of delivery systems that transport drugs and therapeutic antibodies across the human BBB.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy