SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pallottini A.) "

Sökning: WFRF:(Pallottini A.)

  • Resultat 1-10 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Béthermin, Matthieu, et al. (författare)
  • CONCERTO: High-fidelity simulation of millimeter line emissions of galaxies and [CII] intensity mapping
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 667
  • Tidskriftsartikel (refereegranskat)abstract
    • The intensity mapping of the [CII] 158-μm line redshifted to the submillimeter window is a promising probe of the za>4 star formation and its spatial distribution into large-scale structures. To prepare the first-generation experiments (e.g., CONCERTO), we need realistic simulations of the submillimeter extragalactic sky in spectroscopy. We present a new version of the simulated infrared dusty extragalactic sky (SIDES) model including the main submillimeter lines around 1 mm (CO, [CII], [CI]). This approach successfully reproduces the observed line luminosity functions. We then use our simulation to generate CONCERTO-like cubes (125-305 GHz) and forecast the power spectra of the fluctuations caused by the various astrophysical components at those frequencies. Depending on our assumptions on the relation between the star formation rate and [CII] luminosity, and the star formation history, our predictions of the za∼6 [CII] power spectrum vary by two orders of magnitude. This highlights how uncertain the predictions are and how important future measurements will be to improve our understanding of this early epoch. SIDES can reproduce the CO shot noise recently measured at a4;100 GHz by the millimeter-wavelength intensity mapping experiment (mmIME). Finally, we compare the contribution of the different astrophysical components at various redshifts to the power spectra. The continuum is by far the brightest, by a factor of three to 100, depending on the frequency. At 300 GHz, the CO foreground power spectrum is higher than the [CII] one for our base scenario. At lower frequencies, the contrast between [CII] and extragalactic foregrounds is even worse. Masking the known galaxies from deep surveys should allow us to reduce the foregrounds to 20% of the [CII] power spectrum up to z∼ 6.5. However, this masking method will not be sufficient at higher redshifts. The code and the products of our simulation are released publicly, and can be used for both intensity mapping experiments and submillimeter continuum and line surveys.
  •  
2.
  • Van Cuyck, M., et al. (författare)
  • CONCERTO : Extracting the power spectrum of the [CII] emission line
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 676
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. CONCERTO is the first experiment to perform a [CII] line intensity mapping (LIM) survey on the COSMOS field to target z > 5.2. Measuring the [CII] angular power spectrum allows us to study the role of dusty star-forming galaxies in the star formation history during the epochs of Reionization and post-Reionization. The main obstacle to this measurement is the contamination by bright foregrounds: the dust continuum emission and atomic and molecular lines from foreground galaxies at z ≲ 3.Aims. We evaluate our ability to retrieve the [CII] signal in mock observations of the sky using the Simulated Infrared Dusty Extragalactic Sky (SIDES), which covers the mid-infrared to millimetre range. We also measure the impact of field-to-field variance on the residual foreground contamination.Methods. We compared two methods for dealing with the dust continuum emission from galaxies (i.e. the cosmic infrared background fluctuations): the standard principal component analysis (PCA) and the asymmetric re-weighted penalized least-squares (arPLS) method. For line interlopers, the strategy relies on masking low-redshift galaxies using the instrumental beam profile and external catalogues. As we do not have observations of CO or deep-enough classical CO proxies (such as LIR), we relied on the COSMOS stellar mass catalogue, which we demonstrate to be a reliable CO proxy for masking. To measure the angular power spectrum of masked data, we adapted the P of K EstimatoR (POKER) from cosmic infrared background studies and discuss its use on LIM data.Results. The arPLS method achieves a reduction in the cosmic infrared background fluctuations to a sub-dominant level of the [CII] power at z ∼ 7, a factor of > 70 below our fiducial [CII] model. When using the standard PCA, this factor is only 0.7 at this redshift. The masking lowers the power amplitude of line contamination down to 2 × 10−2 Jy2 sr−1. This residual level is dominated by faint undetected sources that are not clustered around the detected (and masked) sources. For our [CII] model, this results in a detection at z = 5.2 with a power ratio [CII]/(residual interlopers) = 62 ± 32 for a 22% area survey loss. However, at z = 7, [CII]/(residual interlopers) = 2.0 ± 1.4, due to the weak contrast between [CII] and the residual line contamination. Thanks to the large area covered by SIDES-Uchuu, we show that the power amplitude of line residuals varies by 12–15% for z = 5.2 − 7, which is less than the field-to-field variance affecting [CII] power spectra.Conclusions. We present an end-to-end simulation of the extragalactic foreground removal that we ran to detect the [CII] at high redshift via its angular power spectrum. We show that cosmic infrared background fluctuations are not a limiting foreground for [CII] LIM. On the contrary, the CO and [CI] line contamination severely limits our ability to accurately measure the [CII] angular power spectrum at z ≳ 7.
  •  
3.
  • Spinoglio, L., et al. (författare)
  • 2017
  • Ingår i: Publications Astronomical Society of Australia. - : Cambridge University Press (CUP). - 1323-3580 .- 1448-6083. ; 34
  • Tidskriftsartikel (refereegranskat)abstract
    • IR spectroscopy in the range 12-230 mu m with the SPace IR telescope for Cosmology and Astrophysics (SPICA) will reveal the physical processes governing the formation and evolution of galaxies and black holes through cosmic time, bridging the gap between the James Webb Space Telescope and the upcoming Extremely Large Telescopes at shorter wavelengths and the Atacama Large Millimeter Array at longer wavelengths. The SPICA, with its 2.5-m telescope actively cooled to below 8 K, will obtain the first spectroscopic determination, in the mid-IR rest-frame, of both the star-formation rate and black hole accretion rate histories of galaxies, reaching lookback times of 12 Gyr, for large statistically significant samples. Densities, temperatures, radiation fields, and gas-phase metallicities will be measured in dust-obscured galaxies and active galactic nuclei, sampling a large range in mass and luminosity, from faint local dwarf galaxies to luminous quasars in the distant Universe. Active galactic nuclei and starburst feedback and feeding mechanisms in distant galaxies will be uncovered through detailed measurements of molecular and atomic line profiles. The SPICA's large-area deep spectrophotometric surveys will provide mid-IR spectra and continuum fluxes for unbiased samples of tens of thousands of galaxies, out to redshifts of z similar to 6.
  •  
4.
  • Gkogkou, A., et al. (författare)
  • CONCERTO: Simulating the CO, [CII], and [CI] line emission of galaxies in a 117 deg2 field and the impact of field-to-field variance
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 670
  • Tidskriftsartikel (refereegranskat)abstract
    • In the submillimeter regime, spectral line scans and line intensity mapping (LIM) are new promising probes for the cold gas content and star formation rate of galaxies across cosmic time. However, both of these two measurements suffer from field-to-field variance. We study the effect of field-to-field variance on the predicted CO and [CII] power spectra from future LIM experiments such as CONCERTO, as well as on the line luminosity functions (LFs) and the cosmic molecular gas mass density that are currently derived from spectral line scans. We combined a 117 deg2 dark matter lightcone from the Uchuu cosmological simulation with the simulated infrared dusty extragalactic sky (SIDES) approach. The clustering of the dusty galaxies in the SIDES-Uchuu product is validated by reproducing the cosmic infrared background anisotropies measured by Herschel and Planck. We find that in order to constrain the CO LF with an uncertainty below 20%, we need survey sizes of at least 0.1 deg2. Furthermore, accounting for the field-to-field variance using only the Poisson variance can underestimate the total variance by up to 80%. The lower the luminosity is and the larger the survey size is, the higher the level of underestimate. At z < 3, the impact of field-to-field variance on the cosmic molecular gas density can be as high as 40% for the 4.6 arcmin2 field, but drops below 10% for areas larger than 0.2 deg2. However, at z > 3 the variance decreases more slowly with survey size and for example drops below 10% for 1 deg2 fields. Finally, we find that the CO and [CII] LIM power spectra can vary by up to 50% in 1 deg2 fields. This limits the accuracy of the constraints provided by the first 1 deg2 surveys. In addition the level of the shot noise power is always dominated by the sources that are just below the detection thresholds, which limits its potential for deriving number densities of faint [CII] emitters. We provide an analytical formula to estimate the field-to-field variance of current or future LIM experiments given their observed frequency and survey size. The underlying code to derive the field-to-field variance and the full SIDES-Uchuu products (catalogs, cubes, and maps) are publicly available.
  •  
5.
  • Carniani, S., et al. (författare)
  • Extended ionised and clumpy gas in a normal galaxy at z=7.1 revealed by ALMA
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 605
  • Tidskriftsartikel (refereegranskat)abstract
    • We present new ALMA observations of the [O III] 88 mu m line and high angular resolution observations of the [C II] 158 mu m line in a normal star forming galaxy at z = 7.1. Previous [C II] observations of this galaxy had detected [C II] emission consistent with the Ly alpha redshift but spatially slightly off set relative to the optical (UV-rest frame) emission. The new [C II] observations reveal that the [C II] emission is partly clumpy and partly diffuse on scales larger than about 1 kpc. [O III] emission is also detected at high significance, off set relative to the optical counterpart in the same direction as the [C II] clumps, but mostly not overlapping with the bulk of the [C II] emission. The off set between different emission components (optical/UV and different far-IR tracers) is similar to that which is observed in much more powerful starbursts at high redshift. We show that the [O III] emitting clump cannot be explained in terms of diffuse gas excited by the UV radiation emitted by the optical galaxy, but it requires excitation by in-situ (slightly dust obscured) star formation, at a rate of about 7 M circle dot yr(-1). Within 20 kpc from the optical galaxy the ALMA data reveal two additional [O III] emitting systems, which must be star forming companions. We discuss that the complex properties revealed by ALMA in the z similar to 7.1 galaxy are consistent with expectations by recent models and cosmological simulations, in which differential dust extinction, differential excitation and different metal enrichment levels, associated with different subsystems assembling a galaxy, are responsible for the various appearance of the system when observed with distinct tracers.
  •  
6.
  • Gallerani, S., et al. (författare)
  • ALMA suggests outflows in z ~ 5.5 galaxies
  • 2018
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 473:2, s. 1909-1917
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first attempt to detect outflows from galaxies approaching the Epoch of Reionization (EoR) using a sample of nine star-forming (SFR = 31 ± 20Mo˙ yr-1) z ~ 5.5 galaxies for which the [C II]158 μm line has been previously obtained with Atacama Large Millimeter Array (ALMA). We first fit each line with a Gaussian function and compute the residuals by subtracting the best-fitting model from the data. We combine the residuals of all sample galaxies and find that the total signal is characterized by a flux excess of ~0.5mJy extended over ~1000 km s-1. Although we cannot exclude that part of this signal is due to emission from faint satellite galaxies, we show that the most probable explanation for the detected flux excess is the presence of broad wings in the [CII] lines, signatures of starburst-driven outflows. We infer an average outflow rate of M˙ = 54 ± 23Mo˙ yr-1, providing a loading factor η = M˙/SFR = 1.7 ± 1.3 in agreement with observed local starbursts. Our interpretation is consistent with outcomes from zoomed hydrosimulations of Dahlia, a z ~ 6 galaxy (SFR ~ 100Mo˙ yr-1), whose feedback-regulated star formation results into an outflow rate M ~ 30Mo˙ yr-1. The quality of the ALMA data is not sufficient for a detailed analysis of the [C II] line profile in individual galaxies. Nevertheless, our results suggest that starburst-driven outflows are in place in the EoR and provide useful indications for future ALMA campaigns. Deeper observations of the [CII] line in this sample are required to better characterize feedback at high-z and to understand the role of outflows in shaping early galaxy formation.
  •  
7.
  • Gallerani, S., et al. (författare)
  • ALMA suggests outflows in z similar to 5.5 galaxies
  • 2018
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 473:2, s. 1909-1917
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first attempt to detect outflows from galaxies approaching the Epoch of Reionization (EoR) using a sample of nine star-forming (SFR = 31 +/- 20M(circle dot) yr(-1)) z similar to 5.5 galaxies for which the [C II] 158 mu m line has been previously obtained with Atacama Large Millimeter Array (ALMA). We first fit each line with a Gaussian function and compute the residuals by subtracting the best-fitting model from the data. We combine the residuals of all sample galaxies and find that the total signal is characterized by a flux excess of similar to 0.5 mJy extended over similar to 1000 km s(-1). Although we cannot exclude that part of this signal is due to emission from faint satellite galaxies, we show that the most probable explanation for the detected flux excess is the presence of broad wings in the [C II] lines, signatures of starburst-driven outflows. We infer an average outflow rate of. M(over dot) = 54 +/- 23M(circle dot) yr(-1), providing a loading factor eta = M(over dot)/SFR = 1.7 +/- 1.3 in agreement with observed local starbursts. Our interpretation is consistent with outcomes from zoomed hydrosimulations of Dahlia, a z similar to 6 galaxy (SFR similar to 100M(circle dot) yr(-1)), whose feedback-regulated star formation results into an outflow rate. M(over dot) similar to 30M(circle dot) yr(-1). The quality of the ALMA data is not sufficient for a detailed analysis of the [C II] line profile in individual galaxies. Nevertheless, our results suggest that starburst-driven outflows are in place in the EoR and provide useful indications for future ALMA campaigns. Deeper observations of the [C II] line in this sample are required to better characterize feedback at high-z and to understand the role of outflows in shaping early galaxy formation.
  •  
8.
  • Kohandel, M., et al. (författare)
  • Kinematics of z ≥ 6 galaxies from [C II] line emission
  • 2019
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 487:3, s. 3007-3020
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the kinematical properties of galaxies in the Epoch of Reionization via the [C ii]158 μm line emission. The line profile provides information on the kinematics as well as structural properties such as the presence of a disc and satellites. To understand how these properties are encoded in the line profile, first we develop analytical models from which we identify disc inclination and gas turbulent motions as the key parameters affecting the line profile. To gain further insights, we use 'Althæa', a highly resolved (30\, \rm pc) simulated prototypical Lyman-break galaxy, in the redshift range z = 6-7, when the galaxy is in a very active assembling phase. Based on morphology, we select three main dynamical stages: (I) merger, (II) spiral disc, and (III) disturbed disc. We identify spectral signatures of merger events, spiral arms, and extra-planar flows in (I), (II), and (III), respectively. We derive a generalized dynamical mass versus [C ii]-line FWHM relation. If precise information on the galaxy inclination is (not) available, the returned mass estimate is accurate within a factor 2 (4). A Tully-Fisher relation is found for the observed high-z galaxies, i.e. L[C ii] (FWHM)1.80 ± 0.35 for which we provide a simple, physically based interpretation. Finally, we perform mock ALMA simulations to check the detectability of [C ii]. When seen face-on, Althæa is always detected at >5σ; in the edge-on case it remains undetected because the larger intrinsic FWHM pushes the line peak flux below detection limit. This suggests that some of the reported non-detections might be due to inclination effects.
  •  
9.
  • Behrens, C., et al. (författare)
  • Dusty galaxies in the Epoch of Reionization : simulations
  • 2018
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 477:1, s. 552-565
  • Tidskriftsartikel (refereegranskat)abstract
    • The recent discovery of dusty galaxies well into the Epoch of Reionization (redshift z > 6) poses challenging questions about the properties of the interstellar medium in these pristine systems. By combining state-of-the-art hydrodynamic and dust radiative transfer simulations, we address these questions focusing on the recently discovered dusty galaxy A2744_YD4 (z = 8.38, Laporte et al.). We show that we can reproduce the observed spectral energy distribution (SED) only using different physical values with respect to the inferred ones by Laporte et al., i.e. a star formation rate of SFR = 78 M(circle dot)yr(-1), a factor approximate to 4 higher than deduced from simple SED fitting. In this case, we find: (i) dust attenuation (corresponding to tau(v) = 1.4) is consistent with a Milky Way (MW) extinction curve; (ii) the dust-to-metal ratio is low, f(d) similar to 0.08, implying that early dust formation is rather inefficient;(iii) the luminosity-weighted dust temperature is high, T-d = 91 23 K, as a result of the intense (approximate to 100 x MW) interstellar radiation field; and (iv) due to the high T-d, the Atacama Large Millimeter/submillimeter Array Band 7 detection can be explained by a limited dust mass, M-d = 1.6 x 10(6) M-circle dot. Finally, the high dust temperatures might solve the puzzling low infrared excess (IRX) recently deduced for high-z galaxies from the IRX-beta relation.
  •  
10.
  • Behrens, C., et al. (författare)
  • Ly alpha emission from galaxies in the Epoch of eionization
  • 2019
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 486:2, s. 2197-2209
  • Tidskriftsartikel (refereegranskat)abstract
    • The intrinsic strength of the Ly alpha line in young, star-forming systems makes it a special tool for studying high-redshift galaxies. However, interpreting observations remains challenging due to the complex radiative transfer involved. Here, we combine state-of-the-art hydrodynamical simulations of 'Althaea', a prototypical Lyman Break Galaxy (LBG; stellar mass M-star similar or equal to 10(10) M-circle dot) at z = 7.2, with detailed radiative transfer computations of dust/continuum, [C II] 158 mu m, and Ly alpha to clarify the relation between the galaxy properties and its Ly alpha emission. Althaea exhibits low (f(alpha) < 1 per cent) Ly alpha escape fractions and equivalent widths, EW less than or similar to 6 angstrom for the simulated lines of sight, with a large scatter. The correlation between escape fraction and inclination is weak, as a result of the rather chaotic structure of high-redshift galaxies. Low f(alpha) values persist even if we artificially remove neutral gas around star-forming regions to mimic the presence of H II regions. The high attenuation is primarily caused by dust clumps co-located with young stellar clusters. We can turn Althaea into a Lyman Alpha Emitter (LAE) only if we artificially remove dust from the clumps, yielding EWs up to 22 angstrom. Our study suggests that the LBG-LAE duty-cycle required by recent clustering measurements poses the challenging problem of a dynamically changing dust attenuation. Finally, we find an anticorrelation between the magnitude of Ly alpha-[C II] line velocity shift and Ly alpha luminosity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy