SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Palmans H) "

Search: WFRF:(Palmans H)

  • Result 1-9 of 9
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Martens, C, et al. (author)
  • Underdosage of the upper-airway mucosa for small fields as used in intensity-modulated radiation therapy: A comparison between radiochromic film measurements, Monte Carlo simulations, and collapsed cone convolution calculations
  • 2002
  • In: Medical Physics. - : Wiley. - 0094-2405. ; 29:7, s. 1528-1535
  • Journal article (peer-reviewed)abstract
    • Head-and-neck tumors are often situated at an air-tissue interface what may result in an underdosage of part of the tumor in radiotherapy treatments using megavoltage photons. especially for small fields. In addition to effects of transient electronic disequilibrium, for these small fields, an increased lateral electron range in air will result in an important extra reduction of the central axis (lose beyond the cavity. Therefore dose calculation algorithms need to model electron transport accurately. We simulated the trachea by a 2 cm diameter cylindrical air cavity with the rin) situated 2 cm beneath the phantom surface. A 6 MV photon beam from an Elekta SLi plus linear accelerator, equipped with the standard multileaf collimator (MLC), was assessed. A 10 x 2 cm(2) and a 10 K 1 cm(2) field, both widthwise collimated by the MLC, were applied with their long side parallel to the cylinder axis. Central axis dose rebuild-up was studied. Radiochromic film measurements were performed in an in-house manufactured polystyrene phantom with the films oriented either along or perpendicular to the beam axis. Monte Carlo simulations were performed with BEAM and EGSnrc. Calculations were also performed using the pencil beam (PB) algorithm and the collapsed cone convolution (CCC) algorithm of Helax-TMS (MDS Nordion, Kanata. Canada) version 6.0.2 and using the CCC algorithm of Pinnacle (ADAC Laboratories, Milpitas. CA, USA) version 4.2. A very good agreement between the film measurements and the Monte Carlo simulations was found. The CCC algorithms were not able to predict the interface dose accurately when lateral electronic disequilibrium occurs, but were shown to be a considerable improvement compared to the PB algorithm. The CCC algorithms overestimate the dose in the rebuild-up region. The interface dose was overestimated by a maximum of 31% or 54%, depending on the implementation of the CCC algorithm. At a depth of I rum, the maximum dose overestimation was 14% or 24%.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Palmans, H., et al. (author)
  • Fluence correction factors for graphite calorimetry in a low-energy clinical proton beam : I. Analytical and Monte Carlo simulations
  • 2013
  • In: Physics in Medicine and Biology. - : IOP Publishing. - 0031-9155 .- 1361-6560. ; 58:10, s. 3481-3499
  • Journal article (peer-reviewed)abstract
    • The conversion of absorbed dose-to-graphite in a graphite phantom to absorbed dose-to-water in a water phantom is performed by water to graphite stopping power ratios. If, however, the charged particle fluence is not equal at equivalent depths in graphite and water, a fluence correction factor, k(fl), is required as well. This is particularly relevant to the derivation of absorbed dose-to-water, the quantity of interest in radiotherapy, from a measurement of absorbed dose-to-graphite obtained with a graphite calorimeter. In this work, fluence correction factors for the conversion from dose-to-graphite in a graphite phantom to dose-to-water in a water phantom for 60 MeV mono-energetic protons were calculated using an analytical model and five different Monte Carlo codes (Geant4, FLUKA, MCNPX, SHIELD-HIT and McPTRAN.MEDIA). In general the fluence correction factors are found to be close to unity and the analytical and Monte Carlo codes give consistent values when considering the differences in secondary particle transport. When considering only protons the fluence correction factors are unity at the surface and increase with depth by 0.5% to 1.5% depending on the code. When the fluence of all charged particles is considered, the fluence correction factor is about 0.5% lower than unity at shallow depths predominantly due to the contributions from alpha particles and increases to values above unity near the Bragg peak. Fluence correction factors directly derived from the fluence distributions differential in energy at equivalent depths in water and graphite can be described by k(fl) = 0.9964 + 0.0024 . z(w-eq) with a relative standard uncertainty of 0.2%. Fluence correction factors derived from a ratio of calculated doses at equivalent depths in water and graphite can be described by k(fl) = 0.9947 + 0.0024 . z(w-eq) with a relative standard uncertainty of 0.3%. These results are of direct relevance to graphite calorimetry in low-energy protons but given that the fluence correction factor is almost solely influenced by non-elastic nuclear interactions the results are also relevant for plastic phantoms that consist of carbon, oxygen and hydrogen atoms as well as for soft tissues.
  •  
8.
  •  
9.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-9 of 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view