SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Palmer Ruth Professor) "

Search: WFRF:(Palmer Ruth Professor)

  • Result 1-10 of 11
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Aripaka, Karthik, 1986- (author)
  • Studies on the biological functions of interaction between components in Wnt, TGF-β and HIF pathways for cancer progression
  • 2019
  • Doctoral thesis (other academic/artistic)abstract
    • Cancer is a disease that involves aggressive changes in the genome and aberrant signals between the living cells. Signalling pathways such as TGF-β (Transforming growth factor-β), Wnt, EGF (epidermal growth factor) and HIF (Hypoxia-inducible factor) evolved to regulate growth and development in mammals. These factors are also implicated for tumorigenesis due to failure or aberrant expression of components in these pathways. Cancer progression is a multistep process, and these steps reflect genetic alterations driving the progressive transformation of healthy human cells into highly malignant derivatives. Many types of cancers are diagnosed in the human population, such as head & neck, cervical, brain, liver, colon, prostate, uterine, breast, and renal cell cancer.Prostate cancer is the second most common cancer and one of the foremost leading cancer-related deaths in men in the world. Aberrant Wnt3a signals promote cancer progression through the accumulation of β-Catenin. In the first paper, we have elucidated intriguing functions for Tumour necrosis factor receptor-associated factor 6 (TRAF6) as a coregulatory factor for the expression of Wnt-target genes which was confirmed in vivo by using CRISPR/Cas9 genomic editing, in zebrafish. Our data suggest that Wnt3a promotes TRAF6 interaction with Wnt components, and TRAF6 is required for gene expression of β-Catenin as well as for the Wnt-ligand co-receptor LRP5. From the in vivo studies, we elucidated positive regulation of TRAF6, which is crucial for survival and development of zebrafish. This study identifies TRAF6 as an evolutionary conserved co-regulatory protein in the Wnt pathway that also promotes the progression of prostate and colorectal cancer due to its positive effects on Wnt3a signalling.Hypoxia is a condition due to O2 deprivation, and Hypoxia-inducible factors (HIF) transcription factors are responsible for the maintenance of oxygen homeostasis in living cells. Irregularities in these HIF transcription factors trigger pathological cellular responses for initiation and progression of malignant cancers. Renal cell carcinoma, malignant cancer arising in renal parenchyma and renal pelvis and, hypoxia plays a vital role in its progression. In the second paper, we have investigated the clinicopathological relevance of several hypoxic and TGF-β component proteins such as HIF-1α/2α/3α, TGF-β type 1 receptor (ALK5-FL) and the intracellular domain of ALK5 (ALK5-ICD), SNAI1 and PAI-1 with patient survival in clear cell renal cell carcinoma (ccRCC). We showed that HIF-2α associated with low cancer-specific survival. HIF-2α and SNAI1 positively correlated with ALK5-ICD, pSMAD2/3, PAI-1 and SNAI1 with HIF-2α; HIF-1α positively correlated with pSMAD2/3. Further, under normoxic conditions, our data suggest that ALK5 interacts with HIF-1α and HIF-2α, and promotes their expression and target genes such as GLUT1 and CA9, in a VHL dependent manner through its kinase activity. These findings shed light on the critical aspect of cross-talk between TGF-β signalling and hypoxia pathway, and also the novel finding of an interaction between ALK5 and HIF-α might provide a more in-depth understanding of mechanisms behind tumour progressionIn the third paper, an ongoing study, we investigated the role of HIF-3α in the progression of Renal cell carcinoma and its association with the components of TGF-β and HIF pathways. We have observed increased levels of HIF-3α in ccRCC and pRCC (papillary renal cell carcinoma) which are associated with advanced tumour stage, metastasis and larger tumours. Also, we found HIF-3α show a significant positive association with pro-invasive gene SNAI1, which is a crucial regulator of epithelial to mesenchymal transition. TRAF6 an E3 ligase known to be a prognostic marker in RCC and we observed HIF-3α associates with TRAF6.
  •  
2.
  • Mendoza-Garcia, Patricia, 1988- (author)
  • Harnessing the power of model systems to investigate regulation of Anaplastic Lymphoma Kinase function
  • 2019
  • Doctoral thesis (other academic/artistic)abstract
    • The anaplastic lymphoma kinase (ALK), initially identified as a translocation partner in anaplastic large cell lymphoma (ALCL), has been described in a number of tumors such as neuroblastoma. Neuroblastoma is a neural crest derived malignancy of the sympathetic nervous system. Therefore, understanding regulation of ALK transcription and activity in the context of normal neural crest development might highlight abnormal events contributing to neuroblastoma initiation. The use of vertebrate model systems has been very important for studying in detail the pathways activated during neural crest development, their contribution to neuroblastoma and the identification of therapeutic targets.Using a yeast one-hybrid approach, we identified Odd-paired (Opa) as a potential transcription factor modulating Alk expression in the Drosophila visceral mesoderm (VM) (Paper I). Opa promotes Alk expression in the VM in combination with Bagpipe (Bap) and Biniou (Bin) through binding to the here identified AlkEB9 enhancer region.In a subsequent paper, we identified ALKAL1 and ALKAL2 as the activating ligands for the human ALK (Paper II). Using a combination of in vitro and cell culture assays we show that the ALKAL proteins can bind and activate human ALK. Moreover, ALKAL proteins can “super-activate” mutant ALK, highlighting a putative role for the ALKALs/ALK axis in neuroblastoma.The third paper shows in vivo evidence of ALKAL activity during zebrafish neural crest development (Paper III). We identified and characterized three zebrafish Alkal proteins and demonstrated their ability to activate human and zebrafish ALK family RTKs. Zebrafish Alkals activate the ALK-related receptor leukocyte tyrosine kinase (LTK) in the neural crest to promote iridophore development.In the last paper, we employed the DamID approach on the Drosophila VM and identified the transcription factor Kahuli (Kah) as an Alk transcriptional target in this tissue (Paper IV). We also addressed the in vivo iv Kah role during embryogenesis and showed that Kah is required for normal midgut invaginations and formation of the body wall musculature.Together, this thesis highlights the importance of ALK receptor signaling during development in vertebrate and invertebrate models. Further, it shows that ALKAL signaling via the activation of the ALK family receptors are involved in neural crest development.
  •  
3.
  • Ulvklo, Carina (author)
  • Genetic mechanisms controlling cell specification and cell numbers in the Drosophila CNS
  • 2012
  • Doctoral thesis (other academic/artistic)abstract
    • A central theme in developmental neurobiology pertains to how the  diversity of different cell types is generated. In addition, it is equally important to understand how the specific numbers of each cell type is regulated. The developing Drosophila central nervous system (CNS) is a widely used system in which to study the genetic mechanisms underlying these events. Earlier studies have shown that a small number of progenitors produce the daunting number of cells that builds the mature CNS. This is accomplished by a series of events that in an increasingly restricted manner results in different combinatorial transcription factor codes that act to specify the different cell types in the CNS. However the factors controlling the progressive restriction in developmental potential and the ultimate fate of cells have not been completely elucidated.My PhD project has been focused on a specific stem cell in the embryonic Drosophila CNS, the neuroblast 5-6 (NB 5-6), and the lineage of neural cells that is produced by that stem cell. Earlier work have provided both a lot of knowledge and a multitude of genetic tools regarding this specific stem cell, which allowed us to address these issues at single cell resolution in an identifiable lineage. In particular, a late-born group of neurons expressing the apterous gene, the Apterous neurons, had been extensively studied in the past. One particular Apterous neuron, Ap4, expresses the neuropeptide gene FMRFamide (FMRFa), and the selective expression of this gene makes it a powerful marker for addressing many aspects of NB 5-6 development.To identify novel genes acting to control neuronal development, a large scale forward genetic screen was performed utilizing an FMRFa-GFP transgenic reporter construct, thereby using a marker that reports perturbations of NB 5-6-lineage development. Flies were treated with EMS, a chemical that induces random point mutations and the progeny where screened for aberrant FMRFa-GFP expression. From a total of ~ 10,000 mutated chromosomes ~600 mutants where isolated and further characterized. One group of mutants displayed additional Apterous neurons when compared to wild type, and a number of them represented new alleles of three previously known genes: neuralized (neur), kuzbanian (kuz), and seven up (svp). Neur and Kuz are parts of the Notch signaling pathway and Svp is the Drosophila COUP-TF1/2 ortholog; an orphan member of the steroid/thyroid receptor superfamily. These findings initiated two separate studies regarding the roles of these genes in the NB 5-6 lineage.Mutants in the Notch pathway i.e., neur and kuz displayed an excess number of Apterous neurons, born from NB 5-6. We initiated detailed studies regarding the origin of these ectopic neurons and could show that Notch signaling is critical for controlling a switch in proliferation mode in the latter part of the NB 5-6 lineage. With this new mechanism we could independently and simultaneously manipulate cell proliferation and temporal progression, and thereby predictable control cell fate and cell numbers born from the NB 5-6.The screen further identified additional mechanisms acting to specify the Ap cluster neurons. During NB 5-6 lineage development several temporal transitions acts to specify neurons born in different time windows. The temporal gene castor is expressed in a fairly large temporal window and the Ap neurons are sub-specified during that window by several combinatorial feed forward loops of transcription factors. In the screen, we identified a novel allele of the svp gene. We found that svp acts as a sub-temporal factor, fine-tuning the castor window into three different temporal parts. Previous studies have shown a role for svp earlier in the temporal cascade and we could confirm this in the NB 5-6 lineage. Together these data for the first time identify dual temporal roles of the same gene in a single NB lineage.In summary, my thesis has helped identify novel genetic mechanisms controlling neuron subtype specification and numbers.
  •  
4.
  • Hugosson, Fredrik, 1972- (author)
  • Deciphering the Alk signaling pathway in Drosophila
  • 2015
  • Doctoral thesis (other academic/artistic)abstract
    • In Drosophila melanogaster the visceral mesoderm (VM) develops during embryogenesis in a process where myoblasts become specified to generate two distinct cell types, the founder cells (FCs) and the fusion competent myoblasts (FCMs) that consequently fuses. The cell specification is dependent on cell signaling mediated by the receptor tyrosine kinase (RTK) Anaplastic lymphoma kinase (Alk) and its ligand Jelly belly (Jeb), how this further sets up different identity programs that drive myoblasts to differentiate into FCs and FCMs is still not well understood.We have analysed whether the Midkine (MDK)/Pleiotrophin (PTN) homologues in Drosophila, Miple1 and Miple2 activate the Alk RTK in vivo. Earlier results from cell culture experiments suggested that vertebrate MDK/PTN is capable of activating ALK, findings that have become controversial with other studies showing contradictory results. We wanted to use Drosophila that have conserved homologues of both MDK/PTN and ALK, to address the question in vivo. We analysed the contribution of Miple in Alk dependent developmental processes such as visceral mesoderm (VM) specification during embryogenesis and in body size regulation of adult flies. Specification of VM as well as body size are not effected by loss of Miple proteins, and over expression of Miple proteins do not effect VM specification or body size. All together we conclude that there is no evidence that Miple1 or Miple2 can activate Alk in vivo. We found that loss of Miple protein effect the median lifespan of the fly which is reduced, interestingly the over expression of Miple proteins can promote an increased median life span in Drosophila.We have also analysed how Alk RTK signaling regulates the Gli-like transcription factor Lame duck (Lmd) in vivo on a post-translational level. It has already been reported that Lmd plays an essential role in specification of FCMs in the somatic mesoderm during embryogenesis. We detect Lmd protein exclusively in FCMs of VM in control embryos, but in Alk mutants Lmd protein is present in all cells of VM and opposite to this when Alk is activated in all cells in VM by over expression of Jeb this results in total loss of Lmd protein. This suggests that Alk signaling is regulating Lmd, and we additionally show that Lmd persist in FCMs in mutants where VM is specified but where myoblast fusion do not occur, supporting that Alk activity in FCs is regulating the downregulation of Lmd in FCMs upon fusion.Finally we have characterised the Rap1GEF C3G in vivo in Drosophila. In cell culture systems, the GTPase Rap1 has been identified to mediate Alk signaling and that this is regulated by the GEF C3G and interestingly the Drosophila C3G is expressed in the FCs of VM. We generated deletion mutants of C3G which exhibit semi-lethality and reduced life span, but no defects in visceral mesoderm development during embryogenesis. Instead we detected distinct phenotypes in somatic muscles of 3rd instar mutant larvae, with detachment and mistargeting of muscles, which effect localisation of integrins. We suggest that Drosophila C3G regulates Rap1 via inside out signaling of integrins which in turn effects cell adhesion in vivo in Drosophila larval muscles.
  •  
5.
  • Vernersson Lindahl, Emma, 1980- (author)
  • Investigating the function of Anaplastic Lymphoma Kinase
  • 2008
  • Doctoral thesis (other academic/artistic)abstract
    • Anaplastic Lymphoma Kinase (ALK) was discovered in 1994, as a chromosomal translocation, t(2;5)(p23;q35), often seen in Anaplastic Large Cell Lymphomas (ALCL). Since then ALK has been extensively studied in this disease as well as in different model organisms. Due to its expression pattern within the central and peripheral nervous system ALK has been implicated in neuronal development. This hypothesis has been further strengthened by studies from Drosophila which have shown Alk to have an important role in optic lobe development. A recently described ALK mouse knockout model do not indicate an essential role for ALK in development, although a potential role within the central nervous system was strengthened. This since ALK-/- animals has an increased number of progenitor cells in the hippocampus and display altered behavior. The overall aim of the studies included in this thesis was to elucidate the function of ALK in the mouse. As a first step toward this goal we conducted an analysis of ALK mRNA and protein expression patterns during development. The strong expression of ALK in neuronal structures supports a role for ALK in neuronal development during embryogenesis. To further investigate the function of ALK in a physiological context we have developed two different ALK knockout strains, the ALK Kinase knockout (KO) and the ALK exon1 KO. The only visible phenotype in these strains is a reduction of total body weight which is apparent in the ALK-/- population when compared to wild type littermates. This size difference seems to take place after birth and is not due to an alteration in food consumption. We have also extensively studied the ALK Kinase KO with respect to gross development, the gastrointestinal canal and the olfactory system. ALK displays a very distinct expression pattern within the gastrointestinal canal being confined to enteric neuron precursors during embryogenesis and enteric nerves in the adult tissue. From these studies we conclude that ALK is not needed for development and viability in mice although it does play a role in regulation of body weight via a presently unknown mechanism. In addition, we have investigated the relationship between the Drosophila and mouse ALK receptor by examining the ability of the Drosophila Alk ligand Jelly-Belly, Jeb, to activate mouse ALK. Using different in vivo and in vitro techniques, we have shown that activation of mouse ALK cannot be accomplished by Drosophila Jeb. From this study we draw the conclusion that during development ligands for the Drosophila and mouse ALK has diverged to a level at which they can no longer substitute for each other.
  •  
6.
  • Yao, Liqun, 1985- (author)
  • Genome-wide identification of Grainy head target genes and their functions in Drosophila embryos
  • 2016
  • Doctoral thesis (other academic/artistic)abstract
    • The transcription factor Grainy head (Grh) is conserved from Drosophila to humans. Drosophila Grh plays important roles in epithelial differentiation and regeneration. To investigate the mechanisms of Grh function, we performed ChIP-sequencing and microarray gene expression analysis and identified Grh target genes in Drosophila embryos at a genome-wide scale. We found Grh ChIP peaks in the proximity of 3754 genes and showed that Grh acts both as an activator and as a repressor. Grh regulates distinct genes in different contexts. During wound healing, Grh transcriptionally activates stitcher (stit), a gene encoding a receptor tyrosine kinase. We show that Stit activates two distinct pathways, including Src kinases and extracellular signal-regulated kinase (ERK), after injury. The tyrosine residue Y762 mediates Stit binding to the SH2 domains of Src42A, Src64B, or Drk. Src family kinases and Drk act as downstream effectors of Stit in the activation of wound response enhancers. Src family kinases control re-epithelialization, but fail to induce the dpERK accumulation after injury. In contrast, Drk is dispensable in re-epithelialization, but can induce the activation of ERK, which can therefore link RTKs to ERK-mediated Grh-dependent activation of wound response genes. In airways, Grh regulates 1152 target genes encoding various enzymes, signaling proteins, and transcription factors. Grh represses the POU-domain transcription factor Vvl (Ventral veinless). Vvl interacts with Grh and can regulate a set of Grh target genes. Grh and Vvl antagonize each other during airway maturation and tracheal tube elongation. The analysis of Grh-responsive enhancers during embryonic development and in wound healing indicates that Grh cooperates with other transcription factors, such as Vvl, to regulate target gene expression.In addition, we identify a novel grh PO isoform expressed predominantly in the central nervous system, epidermis, and trachea. Unlike the canonical grh (grh PI) that can regulate endogenous grh PI and grh PO, Grh PO fails to regulate the grh gene transcriptionally. Further functional analysis in the trachea suggests that Grh PO may act as a partial dominant-negative regulator of Grh.
  •  
7.
  • Eriksson, Therese, 1980- (author)
  • Exploiting Drosophila as a model system for studying anaplastic lymphoma kinase in vivo
  • 2010
  • Doctoral thesis (other academic/artistic)abstract
    • Anaplastic Lymphoma Kinase (ALK) is a Receptor Tyrosine Kinase (RTK) and an oncogene associated with several human diseases, but its normal function in humans and other vertebrates is unclear. Drosophila melanogaster has an ALK homolog, demonstrating that the RTK has been conserved throughout evolution. This makes Drosophila a suitable model organism for studying not only Drosophila ALK function, but also to study mammalian forms of ALK. In Drosophila the ligand Jeb activates ALK, initiating signaling crucial for visceral mesoderm development. The activating ligand for mammalian ALK is unclear, and for this reason Drosophila was employed in a cross-species approach to investigate whether Drosophila Jeb can activate mouse ALK. Jeb is unable to activate mouse ALK, and therefore mouse ALK is unable to substitute for and rescue the Drosophila ALK mutant phenotype. This suggests that there has been significant evolution in the ALK-ligand relationship between the mouse and Drosophila. In humans ALK has recently been shown to be involved in the development of neuroblastoma, a cancer tumor in children. I have developed a Drosophila model for examining human gain of function ALK mutants found in neuroblastoma patients. The various ALK variants have acquired point mutations in the kinase domain that have been predicted to activate the RTK in a constitutive and ligand independent manner. When expressed in the fly eye, active human ALK mutants result in a rough eye phenotype, while inactive wild type ALK does not, due to the lack of an activating ligand in the fly. In this way  several of the ALK mutations identified in neuroblastoma patients could be confirmed to be activated in a ligand independent manner. Moreover, a novel ALK mutant; ALKF1174S, was discovered in a neuroblastoma patient and was in the Drosophila model shown to be a gain of function mutation, and a previously predicted gain of function mutation; ALKI1250T, was shown to be a kinase dead mutation. This fly model can also be used for testing ALK selective inhibitors, for identifying activating ligands for human ALK and for identifying conserved components of the ALK signaling pathway. Gut musculature development in Drosophila is dependent on ALK signaling, while somatic muscle development is not. Proteins of the Wasp-Scar signaling network regulate Arp2/3-complex mediated actin polymerization, and I have investigated their function in visceral and somatic muscle fusion. I found that Verprolin and other members of this protein family are essential for somatic but not visceral muscle development. Despite fusion defects in both tissues in Verprolin and other examined mutants, gut development proceeds, suggesting that fusion is not crucial for visceral mesoderm development. Hence the actin polymerization machinery functions in both somatic and visceral muscle fusion, but this process only appears to be essential in somatic muscle development.
  •  
8.
  • Evangelou, Evangelos, et al. (author)
  • Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits.
  • 2018
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 50:10, s. 1412-1425
  • Journal article (peer-reviewed)abstract
    • High blood pressure is a highly heritable and modifiable risk factor for cardiovascular disease. We report the largest genetic association study of blood pressure traits (systolic, diastolic and pulse pressure) to date in over 1 million people of European ancestry. We identify 535 novel blood pressure loci that not only offer new biological insights into blood pressure regulation but also highlight shared genetic architecture between blood pressure and lifestyle exposures. Our findings identify new biological pathways for blood pressure regulation with potential for improved cardiovascular disease prevention in the future.
  •  
9.
  • Schönherr, Christina, 1980- (author)
  • Anaplastic Lymphoma Kinase mutations and downstream signalling
  • 2012
  • Doctoral thesis (other academic/artistic)abstract
    • The oncogene Anaplastic Lymphoma Kinase (ALK) is a Receptor Tyrosine Kinase (RTK) and was initially discovered as the fusion protein NPM (nucleophosmin)-ALK in a subset of Anaplastic Large Cell Lymphomas (ALCL). Since then more fusion proteins have been identified in a variety of cancers. Further, overexpression of ALK due to gene amplification has been observed in many malignancies, amongst others neuroblastoma, a pediatric cancer. Lately, activating point mutations in the kinase domain of ALK have been described in neuroblastoma patients and neuroblastoma cell lines. In contrast, the physiological function of ALK is still unclear, but ALK is suggested to play a role in the normal development and function of the nervous system. By employing cell culture based approaches, including a tetracycline-inducible PC12 cell system and the in vivo D. melanogaster model system, we aimed to analyze the downstream signalling of ALK and its role in neuroblastoma. First, we wished to analyze whether ALK is able to activate the small GTPase Rap1 contributing to differentiation/proliferation processes. Activated ALK recruits a complex of the GEF C3G and CrkL and activates C3G by tyrosine phosphorylation. This activated complex is able to activate Rap1 resulting either in neurite outgrowth in PC12 cells or proliferation of neuroblastoma cells suggesting a potential role in the oncogenesis of neuroblastoma driven by gain-of-function mutant ALK. Next, we could show that seven investigated ALK mutations with a high probability of being oncogenic (G1128A, I1171N, F1174L, F1174S, R1192P, F1245C and R1275Q), are true gain-of-function mutations, respond differently to ALK inhibitors and have different transforming ability. Especially the F1174S mutation correlates with aggressive disease development. However, the assumed active germ line mutation I1250T is in fact a kinase dead mutation and suggested to act as a dominant-negative receptor. Finally, ALK mutations are most frequently observed in MYCN amplified tumours correlating with a poor clinical outcome. Active ALK regulates mainly the initiation of MYCN transcription in human neuroblastoma cell lines. Further, ALK gain-of-function mutants and MYCN synergize in transforming NIH3T3 cells. Overall, somatic mutations appear to be more aggressive than germ line mutations, implying a different impact on neuroblastoma. Further, successful application of ALK inhibitors suggests a promising future for the development of patient-specific treatments for neuroblastoma patients.
  •  
10.
  • Surendran, Praveen, et al. (author)
  • Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals
  • 2020
  • In: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 52:12, s. 1314-1332
  • Journal article (peer-reviewed)abstract
    • Genetic studies of blood pressure (BP) to date have mainly analyzed common variants (minor allele frequency > 0.05). In a meta-analysis of up to similar to 1.3 million participants, we discovered 106 new BP-associated genomic regions and 87 rare (minor allele frequency <= 0.01) variant BP associations (P < 5 x 10(-8)), of which 32 were in new BP-associated loci and 55 were independent BP-associated single-nucleotide variants within known BP-associated regions. Average effects of rare variants (44% coding) were similar to 8 times larger than common variant effects and indicate potential candidate causal genes at new and known loci (for example, GATA5 and PLCB3). BP-associated variants (including rare and common) were enriched in regions of active chromatin in fetal tissues, potentially linking fetal development with BP regulation in later life. Multivariable Mendelian randomization suggested possible inverse effects of elevated systolic and diastolic BP on large artery stroke. Our study demonstrates the utility of rare-variant analyses for identifying candidate genes and the results highlight potential therapeutic targets.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 11
Type of publication
doctoral thesis (8)
journal article (3)
Type of content
other academic/artistic (8)
peer-reviewed (3)
Author/Editor
Palmer, Ruth, Profes ... (4)
Perola, Markus (3)
Lind, Lars (3)
Sundström, Johan, Pr ... (3)
Wareham, Nicholas J. (3)
Boehnke, Michael (3)
show more...
Verweij, Niek (3)
Rotter, Jerome I. (3)
Luan, Jian'an (3)
Palmer, Colin N. A. (3)
Padmanabhan, Sandosh (3)
Newton-Cheh, Christo ... (3)
Zhao, Jing Hua (3)
Morrison, Alanna C (3)
Salomaa, Veikko (2)
Melander, Olle (2)
Rudan, Igor (2)
Johansson, Åsa (2)
Almgren, Peter (2)
Laakso, Markku (2)
Linneberg, Allan (2)
Grarup, Niels (2)
Hansen, Torben (2)
Ridker, Paul M. (2)
Chasman, Daniel I. (2)
Langenberg, Claudia (2)
Paré, Guillaume (2)
Zhao, Wei (2)
Shah, Nabi (2)
Gaziano, J Michael (2)
Havulinna, Aki S. (2)
Tuomilehto, Jaakko (2)
Stefansson, Kari (2)
Samani, Nilesh J. (2)
Jarvelin, Marjo-Riit ... (2)
Sun, Yan V. (2)
Burgess, Stephen (2)
Mahajan, Anubha (2)
Caulfield, Mark J. (2)
Munroe, Patricia B. (2)
Deary, Ian J (2)
Jousilahti, Pekka (2)
Huffman, Jennifer E (2)
Harris, Tamara B (2)
Launer, Lenore J (2)
Loos, Ruth J F (2)
Harris, Sarah E (2)
Kolcic, Ivana (2)
Porteous, David J (2)
Starr, John M (2)
show less...
University
Umeå University (7)
Uppsala University (3)
Lund University (3)
Stockholm University (2)
University of Gothenburg (1)
Linköping University (1)
show more...
Karolinska Institutet (1)
show less...
Language
English (11)
Research subject (UKÄ/SCB)
Medical and Health Sciences (6)
Natural sciences (5)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view