SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Palsdottir Vilborg 1979) "

Sökning: WFRF:(Palsdottir Vilborg 1979)

  • Resultat 1-10 av 30
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bauzá-Thorbrügge, Marco, et al. (författare)
  • Adiponectin stimulates Sca1+CD34−-adipocyte precursor cells associated with hyperplastic expansion and beiging of brown and white adipose tissue
  • 2024
  • Ingår i: Metabolism. - : Elsevier. - 0026-0495 .- 1532-8600. ; 151
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The adipocyte hormone adiponectin improves insulin sensitivity and there is an inverse correlation between adiponectin levels and type-2 diabetes risk. Previous research shows that adiponectin remodels the adipose tissue into a more efficient metabolic sink. For instance, mice that overexpress adiponectin show increased capacity for hyperplastic adipose tissue expansion as evident from smaller and metabolically more active white adipocytes. In contrast, the brown adipose tissue (BAT) of these mice looks “whiter” possibly indicating reduced metabolic activity. Here, we aimed to further establish the effect of adiponectin on adipose tissue expansion and adipocyte mitochondrial function as well as to unravel mechanistic aspects in this area. Methods: Brown and white adipose tissues from adiponectin overexpressing (APN tg) mice and littermate wildtype controls, housed at room and cold temperature, were studied by histological, gene/protein expression and flow cytometry analyses. Metabolic and mitochondrial functions were studied by radiotracers and Seahorse-based technology. In addition, mitochondrial function was assessed in cultured adiponectin deficient adipocytes from APN knockout and heterozygote mice. Results: APN tg BAT displayed increased proliferation prenatally leading to enlarged BAT. Postnatally, APN tg BAT turned whiter than control BAT, confirming previous reports. Furthermore, elevated adiponectin augmented the sympathetic innervation/activation within adipose tissue. APN tg BAT displayed reduced metabolic activity and reduced mitochondrial oxygen consumption rate (OCR). In contrast, APN tg inguinal white adipose tissue (IWAT) displayed enhanced metabolic activity. These metabolic differences between genotypes were apparent also in cultured adipocytes differentiated from BAT and IWAT stroma vascular fraction, and the OCR was reduced in both brown and white APN heterozygote adipocytes. In both APN tg BAT and IWAT, the mesenchymal stem cell-related genes were upregulated along with an increased abundance of Lineage−Sca1+CD34− “beige-like” adipocyte precursor cells. In vitro, the adiponectin receptor agonist Adiporon increased the expression of the proliferation marker Pcna and decreased the expression of Cd34 in Sca1+ mesenchymal stem cells. Conclusions: We propose that the seemingly opposite effect of adiponectin on BAT and IWAT is mediated by a common mechanism; while reduced adiponectin levels are linked to lower adipocyte OCR, elevated adiponectin levels stimulate expansion of adipocyte precursor cells that produce adipocytes with intrinsically higher metabolic rate than classical white but lower metabolic rate than classical brown adipocytes. Moreover, adiponectin can modify the adipocytes' metabolic activity directly and by enhancing the sympathetic innervation within a fat depot. 
  •  
2.
  • Jansson, John-Olov, 1954, et al. (författare)
  • Body weight homeostat that regulates fat mass independently of leptin in rats and mice.
  • 2018
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 1091-6490. ; 115:2, s. 427-432
  • Tidskriftsartikel (refereegranskat)abstract
    • Subjects spending much time sitting have increased risk of obesity but the mechanism for the antiobesity effect of standing is unknown. We hypothesized that there is a homeostatic regulation of body weight. We demonstrate that increased loading of rodents, achieved using capsules with different weights implanted in the abdomen or s.c. on the back, reversibly decreases the biological body weight via reduced food intake. Importantly, loading relieves diet-induced obesity and improves glucose tolerance. The identified homeostat for body weight regulates body fat mass independently of fat-derived leptin, revealing two independent negative feedback systems for fat mass regulation. It is known that osteocytes can sense changes in bone strain. In this study, the body weight-reducing effect of increased loading was lost in mice depleted of osteocytes. We propose that increased body weight activates a sensor dependent on osteocytes of the weight-bearing bones. This induces an afferent signal, which reduces body weight. These findings demonstrate a leptin-independent body weight homeostat ("gravitostat") that regulates fat mass.
  •  
3.
  • Schéle, Erik, 1980, et al. (författare)
  • Interrelation between interleukin-1 (IL-1), IL-6 and body fat regulating circuits of the hypothalamic arcuate nucleus.
  • 2013
  • Ingår i: Journal of neuroendocrinology. - : Wiley. - 1365-2826 .- 0953-8194. ; 25:6, s. 580-589
  • Tidskriftsartikel (refereegranskat)abstract
    • Interleukin-1 (IL-1) and interleukin-6 (IL-6) are immune modulating cytokines that also affect metabolic functions, as both IL-1 receptor I deficient (IL1RI -/-) and IL-6 deficient (IL-6 -/-) mice develop late-onset obesity and leptin resistance. Both IL-1 and IL-6 appear to target the central nervous system (CNS) to increase energy expenditure. The hypothalamic arcuate nucleus (ARC) is a major relay between the periphery and CNS in body fat regulation, e g by being a target of leptin. We aimed to investigate possible mechanisms for the effects exerted by endogenous IL-1 and IL-6 on body fat at the level of the ARC, as well as possible interactions between IL-1 and IL-6. Therefore, we measured the gene expression of neuropeptides of the ARC involved in energy balance in IL-1RI -/- and IL-6-/- mice. We also investigated the interactions between expression of IL-1 and IL-6 in these mice, and mapped IL-6 receptor α (IL-6Rα) in the ARC The expression of the obesity promoting peptide neuropeptide Y (NPY), found in ARC, was increased in IL-1RI -/- mice. The expression of NPY and agouti-related peptide (AgRP), known to be co-expressed with NPY in ARC neurons, was increased in cold exposed IL-6 -/- mice. IL-6Rα immunoreactivity was densely localized in the ARC, especially in the medial part, and there partly found in NPY positive cell bodies and also α-MSH positive cell bodies. The expression of hypothalamic IL-6 was decreased in IL-1RI -/- mice, while IL-1ß expression was increased in IL-6 -/- mice. The present results indicate that depletion of the activity of the fat suppressing cytokines IL-1 and IL-6 in knockout mice can increase the expression of the obesity promoting neuropeptide NPY in the ARC. Depletion of IL-1 activity suppresses IL-6 expression, and IL-6Rα -like immunoreactivity is present in neurons in the medial ARC including neurons containing NPY. Therefore, IL-6, IL-1 and NPY/AgRP could interact at the level of the hypothalamic ARC in regulation of body fat. © 2013 British Society for Neuroendocrinology.
  •  
4.
  • Svahn, Sara L, et al. (författare)
  • Dietary polyunsaturated fatty acids increase survival and decrease bacterial load during septic S. aureus infection, and improve neutrophil function in mice
  • 2015
  • Ingår i: Infection and Immunity. - 0019-9567 .- 1098-5522. ; 83:2, s. 514-21
  • Tidskriftsartikel (refereegranskat)abstract
    • Severe infection, including sepsis, is an increasing clinical problem that causes prolonged morbidity and substantial mortality. At present, antibiotics are essentially the only pharmacological treatment for sepsis. The incidence of resistance to antibiotics is increasing and it is therefore critical to find new therapies for sepsis. Staphylococcus aureus (S. aureus) is a major cause of septic mortality. Neutrophils play an important role in the defense against bacterial infections. We have shown that a diet with high levels of dietary saturated fatty acids decreases survival in septic mice, but the mechanisms behind remain elusive. The aim of the present study was to investigate how the differences in dietary fat composition affect survival and bacterial load after experimental septic infection and neutrophil function in uninfected mice. We found that, after S. aureus infection, mice fed polyunsaturated high fat diet (HFD/P) for 8 weeks had increased survival and decreased bacterial load during sepsis compared with mice fed saturated high fat diet (HFD/S), and similar to that of mice fed low fat diet (LFD). Uninfected mice fed HFD/P had increased frequency of neutrophils in bone marrow compared with mice fed HFD/S. In addition, mice fed HFD/P had a higher frequency of neutrophils recruited to the site of inflammation in response to peritoneal injection of thioglycollate compared with HFD/S. Differences between the proportion of dietary protein and carbohydrate did not affect septic survival at all. In conclusion, polyunsaturated dietary fat increased both survival and efficiency of bacterial clearance during septic S. aureus infection. Moreover, this diet increased the frequency and chemotaxis of neutrophils, key components of the immune response to S. aureus infections.
  •  
5.
  • Anesten, Fredrik, et al. (författare)
  • Functional interleukin-6 receptor- is located in tanycytes at the base of the third ventricle
  • 2017
  • Ingår i: Journal of Neuroendocrinology. - : Wiley. - 0953-8194 .- 1365-2826. ; 29:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Interleukin (IL)-6(-)/(-) mice develop mature onset obesity, whereas i.c.v. injection of IL-6 decreases obesity in rodents. Moreover, levels of IL-6 in cerebrospinal fluid (CSF) were reported to be inversely correlated with obesity in humans. Tanycytes lining the base of the third ventricle (3V) in the hypothalamus have recently been reported to be of importance for metabolism. In the present study, we investigated whether tanycytes could respond to IL-6 in the CSF. With immunohistochemistry using a well characterised antibody directed against the ligand binding receptor for IL-6, IL-6 receptor (IL-6R), it was found that tanycytes, identified by the two markers, vimentin and dopamine- and cAMP-regulated phosphoprotein of 32 kDa, contained IL-6R. There were fewer IL-6R on another type of ventricle-lining cells, ependymal cells, as identified by the marker glucose transporter-1. To demonstrate that the immunoreactive IL-6R were responsive to IL-6, we injected IL-6 i.c.v. This treatment increased immunoreactive phosphorylated signal transducer and activator of transcription-3 (pSTAT3) in tanycytes after 5minutes and in cells in the medial part of the arcuate nucleus after 5 and 15 minutes. Intracerebroventricular injection of leptin exerted similar effects. As expected, i.p. injection of leptin also induced pSTAT3 staining in the hypothalamus, whereas i.p. IL-6 injection had little effect on this parameter. Intracerebroventricular or i.p. injection of vehicle only had no effect on pSTAT3-immunoreactivity. In summary, there are functional IL-6R on tanycytes at the bottom of the 3V, in agreement with the possibility that ventricular administration of IL-6 decreases obesity in mice via an effect on this cell type.
  •  
6.
  • Anesten, Fredrik, et al. (författare)
  • Glucagon-Like Peptide-1-, but not Growth and Differentiation Factor 15-, Receptor Activation Increases the Number of Interleukin-6-Expressing Cells in the External Lateral Parabrachial Nucleus
  • 2019
  • Ingår i: Neuroendocrinology. - : S. Karger AG. - 0028-3835 .- 1423-0194. ; 109:4, s. 310-321
  • Tidskriftsartikel (refereegranskat)abstract
    • Interleukin (IL)-6 in the hypothalamus and hindbrain is an important downstream mediator of suppression of body weight and food intake by glucagon-like peptide-1 (GLP-1) receptor stimulation. CNS GLP-1 is produced almost exclusively in prepro-glucagon neurons in the nucleus of the solitary tract. These neurons innervate energy balance-regulating areas, such as the external lateral parabrachial nucleus (PBNel); essential for induction of anorexia. Using a validated novel IL-6-reporter mouse strain, we investigated the interactions in PBNel between GLP-1, IL-6, and calcitonin gene-related peptide (CGRP, a well-known mediator of anorexia). We show that PBNel GLP-1R-containing cells highly (to about 80%) overlap with IL-6-containing cells on both protein and mRNA level. Intraperitoneal administration of a GLP-1 analogue exendin-4 to mice increased the proportion of IL-6-containing cells in PBNel 3-fold, while there was no effect in the rest of the lateral parabrachial nucleus. In contrast, injections of an anorexigenic peptide growth and differentiation factor 15 (GDF15) markedly increased the proportion of CGRP-containing cells, while IL-6-containing cells were not affected. In summary, GLP-1R are found on IL-6-producing cells in PBNel, and GLP-1R stimulation leads to an increase in the proportion of cells with IL-6-reporter fluorescence, supporting IL-6 mediation of GLP-1 effects on energy balance.
  •  
7.
  • Anesten, Fredrik, et al. (författare)
  • Interleukin-6 in the central amygdala is bioactive and co-localised with glucagon-like peptide-1 receptor
  • 2019
  • Ingår i: Journal of Neuroendocrinology. - : Wiley. - 0953-8194 .- 1365-2826. ; 31:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuronal circuits involving the central amygdala (CeA) are gaining prominence as important centres for regulation of metabolic functions. As a part of the subcortical food motivation circuitry, CeA is associated with food motivation and hunger. We have previously shown that interleukin (IL)-6 can act as a downstream mediator of the metabolic effects of glucagon-like peptide-1 (GLP-1) receptor (R) stimulation in the brain, although the sites of these effects are largely unknown. In the present study, we used the newly generated and validated RedIL6 reporter mouse strain to investigate the presence of IL-6 in the CeA, as well as possible interactions between IL-6 and GLP-1 in this nucleus. IL-6 was present in the CeA, mostly in cells in the medial and lateral parts of this structure, and a majority of IL-6-containing cells also co-expressed GLP-1R. Triple staining showed GLP-1 containing fibres co-staining with synaptophysin close to or overlapping with IL-6 containing cells. GLP-1R stimulation enhanced IL-6 mRNA levels. IL-6 receptor-alpha (IL-6Rα) was found to a large part in neuronal CeA cells. Using electrophysiology, we determined that cells with neuronal properties in the CeA could be rapidly stimulated by IL-6 administration in vitro. Moreover, microinjections of IL-6 into the CeA could slightly reduce food intake in vivo in overnight fasted rats. In conclusion, IL-6 containing cells in the CeA express GLP-1R, are close to GLP-1-containing synapses, and demonstrate increased IL-6 mRNA in response to GLP-1R agonist treatment. IL-6, in turn, exerts biological effects in the CeA, possibly via IL-6Rα present in this nucleus. 2019 The Authors. Journal of Neuroendocrinology published by John Wiley & Sons Ltd on behalf of British Society for Neuroendocrinology
  •  
8.
  • Anesten, Fredrik, et al. (författare)
  • Preproglucagon neurons in the hindbrain have IL-6 receptor-α and show Ca2+ influx in response to IL-6
  • 2016
  • Ingår i: American Journal of Physiology. Regulatory Integrative and Comparative Physiology. - : American Physiological Society. - 0363-6119 .- 1522-1490. ; 311:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuronal circuits in the hypothalamus and hindbrain are of importance for control of food intake, energy expenditure, and fat mass. We have recently shown that treatment with exendin-4 (Ex-4), an analog of the proglucagonderived molecule glucagon-like peptide 1 (GLP-1), markedly increases mRNA expression of the cytokine interleukin-6 (IL-6) in the hypothalamus and hindbrain and that this increase partly mediates the suppression of food intake and body weight by Ex-4. Endogenous GLP-1 in the central nervous system (CNS) is produced by preproglucagon (PPG) neurons of the nucleus of the solitary tract (NTS) in the hindbrain. These neurons project to various parts of the brain, including the hypothalamus. Outside the brain, IL-6 stimulates GLP-1 secretion from the gut and pancreas. In this study, we aim to investigate whether IL-6 can affect GLP-1-producing PPG neurons in the nucleus of the solitary tract (NTS) in mouse hindbrain via the ligand binding part of the IL-6 receptor, IL-6 receptor-α (IL-6Rα). Using immunohistochemistry, we found that IL-6Rα was localized on PPG neurons of the NTS. Recordings of these neurons in GCaMP3/GLP-1 reporter mice showed that IL-6 enhances cytosolic Ca2+ concentration in neurons capable of expressing PPG. We also show that the Ca2+ increase originates from the extracellular space. Furthermore, we found that IL-6Rα was localized on cells in the caudal hindbrain expressing immunoreactive NeuN (a neuronal marker) or CNP:ase (an oligodendrocyte marker). In summary, IL-6Rα is present on PPG neurons in the NTS, and IL-6 can stimulate these cells by increasing influx of Ca2+ to the cytosol from the extracellular space. © 2016 the American Physiological Society.
  •  
9.
  •  
10.
  • Bake, Tina, et al. (författare)
  • The gravitostat protects diet-induced obese rats against fat accumulation and weight gain
  • 2021
  • Ingår i: Journal of Neuroendocrinology. - : Wiley. - 0953-8194 .- 1365-2826. ; 33:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The gravitostat is a novel homeostatic body weight-regulating mechanism, mostly studied in mice, and recently confirmed in obese humans. In the present study, we explored the effect of weight loading on metabolic outcomes, meal patterns and parameters linked to energy expenditure in both obese and lean rats. Diet-induced obese (DIO) and lean rats were implanted with capsules weighing either 15% of biological body weight (load) or empty capsules (1.3% of body weight; controls). Loading protected against fat accumulation more markedly in the DIO group. In line with this, the obesity-related impairment in insulin sensitivity was notably ameliorated in DIO rats upon loading, as revealed by the reduction in serum insulin levels and homeostatic model assessment for insulin resistance index scores. Although 24-hour caloric intake was reduced in both groups, this effect was greater in loaded DIO rats than in loaded lean peers. During days 10-16, after recovery from surgery, loading: (i) decreased meal size in both groups (only during the light phase in DIO rats) but this was compensated in lean rats by an increase in meal frequency; (ii) reduced dark phase locomotor activity only in lean rats; and (iii) reduced mean caloric efficiency in DIO rats. Muscle weight was unaffected by loading in either group. Dietary-obese rats are therefore more responsive than lean rats to loading.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 30
Typ av publikation
tidskriftsartikel (28)
konferensbidrag (1)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (28)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Ohlsson, Claes, 1965 (7)
Gabrielsson, Britt, ... (6)
Strandvik, Birgitta, ... (6)
Skibicka, Karolina P (5)
Olsson, Bob, 1969 (4)
Egecioglu, Emil, 197 ... (4)
visa fler...
Wickman, Anna, 1969 (4)
Dickson, Suzanne L., ... (3)
Windahl, Sara H, 197 ... (3)
Zhang, F. (2)
Poutanen, Matti (2)
Borén, Jan, 1963 (2)
Hammarstedt, Ann, 19 ... (2)
Smith, Ulf, 1943 (2)
Grahnemo, Louise (2)
Hedjazifar, Shahram, ... (2)
Meister, B (1)
Jansson, Per-Anders, ... (1)
Bergström, Göran, 19 ... (1)
Nilsson, Staffan, 19 ... (1)
Ericson, Mia, 1970 (1)
Johansson, Maria E, ... (1)
Enejder, Annika, 196 ... (1)
Carlsson, Lena M S, ... (1)
Svensson, Per-Arne, ... (1)
Sjöholm, Kajsa, 1971 (1)
Anveden, Åsa (1)
Jacobson, Peter, 196 ... (1)
Sjöström, Lars (1)
Froguel, P (1)
Månsson, Jan-Eric, 1 ... (1)
Palmquist, Anders, 1 ... (1)
Mellström, Dan, 1945 (1)
Boucher, Jeremie (1)
Liposits, Z. (1)
Lindén, Daniel, 1971 (1)
Bollano, Entela, 197 ... (1)
Chanclón, Belén (1)
Törnqvist, Anna E (1)
Wernstedt Asterholm, ... (1)
Richard, Jennifer E. (1)
Gribble, F. M. (1)
Reimann, F. (1)
Johansson, Maria E I ... (1)
Andersson, Irene, 19 ... (1)
Bohlooly-Yeganeh, Mo ... (1)
Skott, O. (1)
Larsson, Christel, 1 ... (1)
Levin, Malin, 1973 (1)
Henricsson, Marcus, ... (1)
visa färre...
Lärosäte
Göteborgs universitet (30)
Karolinska Institutet (10)
Chalmers tekniska högskola (7)
Högskolan i Skövde (1)
Språk
Engelska (30)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (27)
Lantbruksvetenskap (4)
Naturvetenskap (3)
Samhällsvetenskap (3)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy