SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Palumaa Peep) "

Sökning: WFRF:(Palumaa Peep)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Berntsson, Elina, et al. (författare)
  • Characterization of Uranyl (UO22+) Ion Binding to Amyloid Beta (Aβ) Peptides : Effects on Aβ Structure and Aggregation
  • 2023
  • Ingår i: ACS Chemical Neuroscience. - 1948-7193. ; 14:15, s. 2618-2633
  • Tidskriftsartikel (refereegranskat)abstract
    • Uranium (U) is naturally present in ambient air, water, and soil, and depleted uranium (DU) is released into the environment via industrial and military activities. While the radiological damage from U is rather well understood, less is known about the chemical damage mechanisms, which dominate in DU. Heavy metal exposure is associated with numerous health conditions, including Alzheimer’s disease (AD), the most prevalent age-related cause of dementia. The pathological hallmark of AD is the deposition of amyloid plaques, consisting mainly of amyloid-β (Aβ) peptides aggregated into amyloid fibrils in the brain. However, the toxic species in AD are likely oligomeric Aβ aggregates. Exposure to heavy metals such as Cd, Hg, Mn, and Pb is known to increase Aβ production, and these metals bind to Aβ peptides and modulate their aggregation. The possible effects of U in AD pathology have been sparsely studied. Here, we use biophysical techniques to study in vitro interactions between Aβ peptides and uranyl ions, UO22+, of DU. We show for the first time that uranyl ions bind to Aβ peptides with affinities in the micromolar range, induce structural changes in Aβ monomers and oligomers, and inhibit Aβ fibrillization. This suggests a possible link between AD and U exposure, which could be further explored by cell, animal, and epidemiological studies. General toxic mechanisms of uranyl ions could be modulation of protein folding, misfolding, and aggregation. 
  •  
2.
  • Berntsson, Elina, et al. (författare)
  • Mercury Ion Binding to Apolipoprotein E Variants ApoE2, ApoE3, and ApoE4 : Similar Binding Affinities but Different Structure Induction Effects
  • 2022
  • Ingår i: ACS Omega. - : American Chemical Society (ACS). - 2470-1343. ; 7:33, s. 28924-28931
  • Tidskriftsartikel (refereegranskat)abstract
    • Mercury intoxication typically produces more severe outcomes in people with the APOE-ε4 gene, which codes for the ApoE4 variant of apolipoprotein E, compared to individuals with the APOE-ε2 and APOE-ε3 genes. Why the APOE-ε4 allele is a risk factor in mercury exposure remains unknown. One proposed possibility is that the ApoE protein could be involved in clearing of heavy metals, where the ApoE4 protein might perform this task worse than the ApoE2 and ApoE3 variants. Here, we used fluorescence and circular dichroism spectroscopies to characterize the in vitro interactions of the three different ApoE variants with Hg(I) and Hg(II) ions. Hg(I) ions displayed weak binding to all ApoE variants and induced virtually no structural changes. Thus, Hg(I) ions appear to have no biologically relevant interactions with the ApoE protein. Hg(II) ions displayed stronger and very similar binding affinities for all three ApoE isoforms, with KD values of 4.6 μM for ApoE2, 4.9 μM for ApoE3, and 4.3 μM for ApoE4. Binding of Hg(II) ions also induced changes in ApoE superhelicity, that is, altered coil–coil interactions, which might modify the protein function. As these structural changes were most pronounced in the ApoE4 protein, they could be related to the APOE-ε4 gene being a risk factor in mercury toxicity.
  •  
3.
  •  
4.
  • Noormägi, Andra, et al. (författare)
  • Direct Competition of ATCUN Peptides with Human Serum Albumin for Copper(II) Ions Determined by LC-ICP MS
  • 2023
  • Ingår i: ACS Omega. - 2470-1343. ; 8:37, s. 33912-33919
  • Tidskriftsartikel (refereegranskat)abstract
    • Copper is an indispensable biometal, primarily serving as a redox-competent cofactor in numerous proteins. Apart from preformed copper-binding sites within the protein structures, small peptide motifs exist called ATCUN, which are composed of an N-terminal tripeptide XZH, able to bind Cu(II) ions in exchangeable form. These motifs are common for serum albumin, but they are also present in a wide range of proteins and peptides. These proteins and peptides can be involved in copper metabolism, and copper ions can affect their biological role. The distribution of copper between the ATCUN peptides, including truncated amyloid-β (Aβ) peptides Aβ4–42 and Aβ11–42, which may be involved in Alzheimer’s disease pathogenesis, is mainly determined by their concentrations and relative Cu(II)-binding affinities. The Cu(II)-binding affinity (log Kd) of several ATCUN peptides, determined by different methods and authors, varies by more than three orders of magnitude. This variation may be attributed to the chemical properties of peptides but can also be influenced by the differences in methods and experimental conditions used for the determination of Kd. In the current study, we performed direct competition experiments between selected ATCUN peptides and HSA by using an LC-ICP MS-based approach. We demonstrated that ATCUN and truncated Aβ peptides Aβ4–16 and Aβ11–15 bind Cu(II) ions with an affinity similar to that for HSA. Our results demonstrate that ATCUN motifs cannot compete with excess HSA for the binding of Cu(II) ions in the blood and cerebrospinal fluid. 
  •  
5.
  • Tiiman, Ann, et al. (författare)
  • In vitro fibrillization of Alzheimer's amyloid-beta peptide (1-42)
  • 2015
  • Ingår i: AIP Advances. - : AIP Publishing. - 2158-3226. ; 5:9
  • Tidskriftsartikel (refereegranskat)abstract
    • The amyloid deposition in the form of extracellular fibrillar aggregates of amyloid-beta (A beta) peptide is a critical pathological event in Alzheimer's disease. Here, we report a systematic investigation of the effects of environmental factors on the kinetics of A beta fibrillization in vitro. The effects of A beta 42 peptide concentration, temperature, pH, added solvents and the ratio of A beta 40 and A beta 42 on the peptide fibrillization under agitated conditions was studied. The analysis show that the rate of fibril growth by monomer addition is not limited by diffusion but by rearrangement in the monomer structure, which is enhanced by low concentrations of fluorinated alcohols and characterized by the activation energy of 12 kcal/ mol. Fibrillization rate decreases at pH values below 7.0 where simultaneous protonation of His 13 and 14 inhibits fibril formation. The lag period for A beta 42 was only twofold shorter and the fibril growth rate twofold faster than those of A beta 40. Lag period was shortened and the fibrillization rate was increased only at 90% content of A beta 42.
  •  
6.
  • Wallin, Cecilia, et al. (författare)
  • Mercury and Alzheimer's Disease : Hg(II) Ions Display Specific Binding to the Amyloid-β Peptide and Hinder Its Fibrillization
  • 2020
  • Ingår i: Biomolecules. - : MDPI AG. - 2218-273X. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Brains and blood of Alzheimer's disease (AD) patients have shown elevated mercury concentrations, but potential involvement of mercury exposure in AD pathogenesis has not been studied at the molecular level. The pathological hallmark of AD brains is deposition of amyloid plaques, consisting mainly of amyloid-beta (A beta) peptides aggregated into amyloid fibrils. A beta peptide fibrillization is known to be modulated by metal ions such as Cu(II) and Zn(II). Here, we study in vitro the interactions between A beta peptides and Hg(II) ions by multiple biophysical techniques. Fluorescence spectroscopy and atomic force microscopy (AFM) show that Hg(II) ions have a concentration-dependent inhibiting effect on A beta fibrillization: at a 1:1 A betaHg(II) ratio only non-fibrillar A beta aggregates are formed. NMR spectroscopy shows that Hg(II) ions interact with the N-terminal region of A beta(1-40) with a micromolar affinity, likely via a binding mode similar to that for Cu(II) and Zn(II) ions, i.e., mainly via the histidine residues His6, His13, and His14. Thus, together with Cu(II), Fe(II), Mn(II), Pb(IV), and Zn(II) ions, Hg(II) belongs to a family of metal ions that display residue-specific binding interactions with A beta peptides and modulate their aggregation processes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy