SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pan Xun) "

Sökning: WFRF:(Pan Xun)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beal, Jacob, et al. (författare)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
2.
  • Dong, Y. B., et al. (författare)
  • High Light Extraction Efficiency AlGaInP LEDs With Proton Implanted Current Blocking Layer
  • 2016
  • Ingår i: IEEE Electron Device Letters. - : Institute of Electrical and Electronics Engineers (IEEE). - 0741-3106 .- 1558-0563. ; 37:10, s. 1303-1306
  • Tidskriftsartikel (refereegranskat)abstract
    • Improving light extraction efficiency is the key issue for light-emitting diodes (LEDs). Nowadays, a vertical structure design dominates LEDs. However, the light from the active region just below the p-electrode is severely blocked by the metal contact. In this letter, we use proton implantation with a depth all the way to the active region to turn the part beneath the p-pad insulating, which constitutes the most-effective-ever current blocking method. Earlier particle implantation studies never reached the device active region. Our experimental results show that the H+-implanted LEDs improve the light output power by 75% compared with non-implanted counterparts and the light intensity increases by 64.48%. By virtue of indium tin oxide current spreading film, the increase in working voltage is negligible. Analyzing the reverse leakage current, the side effect associated with the implantation is limited to an acceptable range. Numerical simulation is performed to support the experiment. Our results represent a new and simple method for solving the light blocking problem in vertical LEDs, without introducing the seemingly existing severe implantation damage to the device structure.
  •  
3.
  • Gedefaw, Desta Antenehe, 1971, et al. (författare)
  • Optimization of the power conversion efficiency in high bandgap pyridopyridinedithiophene-based conjugated polymers for organic photovoltaics by the random terpolymer approach
  • 2017
  • Ingår i: European Polymer Journal. - : Elsevier BV. - 0014-3057. ; 91, s. 92-99
  • Tidskriftsartikel (refereegranskat)abstract
    • We report that the organic photovoltaic (OPV) performance of wide band gap pyridopyridinedithiophene-based conjugated polymers can be significantly improved by employing the random terpolymer approach for the development of new pyridopyridinedithiophene-based conjugated polymers. This is demonstrated by the synthesis of the alternating copolymer (P1) consisting of 3,3?-difluoro-2,2?-bithiophene and pyridopyridinedithiophene and the random terpolymer (P2) containing pyridopyridinedithiophene 3,3?-difluoro-2,2?-bithiophene and thiophene. OPV devices fabricated by P1 and P2 in combination with PC61BM and PC71BM in an inverted device configuration exhibited power conversion efficiencies (PCEs) of 1.5% and 4.0%, respectively. We identified that the main reason for the enhanced performance of the OPV devices based on the P2 random copolymer was the improved morphology (miscibility) between P2 and PCBM as compared to P1. More specifically, atomic force microscopy (AFM) and scanning electron microscopy (SEM) studies revealed that the P1 based films showed rougher surface with clear crystallization/precipitation of the polymer chains even after the addition of chloronaphthalene (CN) to the chloroform processing solvent which significantly limited the short circuit current density (JSC), fill factor (FF) and overall performance of the prepared photovoltaic devices. On the other hand, P2 based films showed better miscibility with the acceptor particularly when processed using 5% CN containing chloroform solvent giving a respectable improvement in the PCE of the photovoltaic devices.
  •  
4.
  • He, Haoran, et al. (författare)
  • Deciphering microbiomes dozens of meters under our feet and their edaphoclimatic and spatial drivers
  • 2024
  • Ingår i: Global Change Biology. - 1354-1013. ; 30:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Microbes inhabiting deep soil layers are known to be different from their counterpart in topsoil yet remain under investigation in terms of their structure, function, and how their diversity is shaped. The microbiome of deep soils (>1 m) is expected to be relatively stable and highly independent from climatic conditions. Much less is known, however, on how these microbial communities vary along climate gradients. Here, we used amplicon sequencing to investigate bacteria, archaea, and fungi along fifteen 18-m depth profiles at 20–50-cm intervals across contrasting aridity conditions in semi-arid forest ecosystems of China's Loess Plateau. Our results showed that bacterial and fungal α diversity and bacterial and archaeal community similarity declined dramatically in topsoil and remained relatively stable in deep soil. Nevertheless, deep soil microbiome still showed the functional potential of N cycling, plant-derived organic matter degradation, resource exchange, and water coordination. The deep soil microbiome had closer taxa–taxa and bacteria–fungi associations and more influence of dispersal limitation than topsoil microbiome. Geographic distance was more influential in deep soil bacteria and archaea than in topsoil. We further showed that aridity was negatively correlated with deep-soil archaeal and fungal richness, archaeal community similarity, relative abundance of plant saprotroph, and bacteria–fungi associations, but increased the relative abundance of aerobic ammonia oxidation, manganese oxidation, and arbuscular mycorrhizal in the deep soils. Root depth, complexity, soil volumetric moisture, and clay play bridging roles in the indirect effects of aridity on microbes in deep soils. Our work indicates that, even microbial communities and nutrient cycling in deep soil are susceptible to changes in water availability, with consequences for understanding the sustainability of dryland ecosystems and the whole-soil in response to aridification. Moreover, we propose that neglecting soil depth may underestimate the role of soil moisture in dryland ecosystems under future climate scenarios.
  •  
5.
  • Holmes, Natalie P., et al. (författare)
  • Engineering Two-Phase and Three-Phase Microstructures from Water-Based Dispersions of Nanoparticles for Eco-Friendly Polymer Solar Cell Applications
  • 2018
  • Ingår i: Chemistry of Materials. - : American Chemical Society (ACS). - 0897-4756 .- 1520-5002. ; 30:18, s. 6521-6531
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanoparticle organic photovoltaics, a subfield of organic photovoltaics (OPV), has attracted increasing interest in recent years due to the eco-friendly fabrication of solar modules afforded by colloidal ink technology. Importantly, using this approach it is now possible to engineer the microstructure of the light absorbing/charge generating layer of organic photovoltaics; decoupling film morphology from film deposition. In this study, single-component nanoparticles of poly(3-hexylthiophene) (P3HT) and phenyl-C61 butyric acid methyl ester (PC61BM) were synthesized and used to generate a two-phase microstructure with control over domain size prior to film deposition. Scanning transmission X-ray microscopy (STXM) and electron microscopy were used to characterize the thin film morphology. Uniquely, the measured microstructure was a direct input for a nanoscopic kinetic Monte Carlo (KMC) model allowing us to assess exciton transport properties that are experimentally inaccessible in these single-component particles. Photoluminescence, UV-vis spectroscopy measurements, and KMC results of the nanoparticle thin films enabled the calculation of an experimental exciton dissociation efficiency (ηED) of 37% for the two-phase microstructure. The glass transition temperature (Tg) of the materials was characterized with dynamic mechanical thermal analysis (DMTA) and thermal annealing led to an increase in ηED to 64% due to an increase in donor-acceptor interfaces in the thin film from both sintering of neighboring opposite-type particles in addition to the generation of a third mixed phase from diffusion of PC61BM into amorphous P3HT domains. As such, this study demonstrates the higher level of control over donor-acceptor film morphology enabled by customizing nanoparticulate colloidal inks, where the optimal three-phase film morphology for an OPV photoactive layer can be designed and engineered.
  •  
6.
  • Murto, Petri Henrik, 1984, et al. (författare)
  • High performance all-polymer photodetector comprising a donor-Acceptor-Acceptor structured indacenodithiophene-bithieno[3,4-c] pyrroletetrone copolymer
  • 2018
  • Ingår i: ACS Macro Letters. - : American Chemical Society (ACS). - 2161-1653. ; 7:4, s. 395-400
  • Tidskriftsartikel (refereegranskat)abstract
    • The synthesis of an acceptor polymer PIDT-2TPD, comprising indacenodithiophene (IDT) as the electron-rich unit and an interconnected bithieno[3,4-c]pyrrole-4,4′,6,6′-Tetrone (2TPD) as the electron-deficient unit, and its application for all-polymer photodetectors is reported. The optical, electrochemical, charge transport, and device properties of a blend of poly(3-hexylthiophene) and PIDT-2TPD are studied. The blend shows strong complementary absorption and balanced electron and hole mobility, which are desired properties for a photoactive layer. The device exhibits dark current density in the order of 10 -5 mA/cm 2 , external quantum efficiency broadly above 30%, and nearly planar detectivity over the entire visible spectral range (maximum of 1.1 × 10 12 Jones at 610 nm) under-5 V bias. These results indicate that PIDT-2TPD is a highly functional new type of acceptor and further motivate the use of 2TPD as a building block for other n-Type materials.
  •  
7.
  • Pan, G. Z., et al. (författare)
  • Dependence of Beam Quality on Optical Intensity Asymmetry in In-Phase Coherently Coupled VCSEL Array
  • 2018
  • Ingår i: IEEE Journal of Quantum Electronics. - 0018-9197 .- 1558-1713. ; 54:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Dependence of beam quality on optical intensity asymmetry among elements in in-phase coherently coupled vertical cavity surface emitting lasers array is analyzed using the finite-difference time domain solutions software. The analysis results reveal that the coupling efficiency of in-phased array decreases and the divergence increases as the level of optical intensity asymmetry increases. Furthermore, an addressable separated-contact three-element triangular in-phased array is fabricated and measured to verify the analysis. The array exhibits a relatively high of coupling efficiency of 24% and a near-diffraction-limit divergence of 3.2° (1.12 times of the diffraction limit, D.L.) when the optical intensity of each element is adjusted to be uniform. By degrading the optical intensity symmetry, the coupling efficiency decreases to 17.07% and the divergence increases to 4.03° ( 1.37× D.L.). After that, a much larger 10× 10 array exhibiting in-phase characteristics is produced and its beam quality and optical uniformity are measured and discussed. Analysis and experiment results demonstrate that symmetric optical intensity among elements is essential for in-phased array to achieve high beam quality. Employing separate contacts in the array is proved an effective way to obtain uniform optical intensity and achieve high beam quality.
  •  
8.
  • Pan, G. Z., et al. (författare)
  • Large-Scale Proton-Implant-Defined VCSEL Arrays with Narrow Beamwidth
  • 2018
  • Ingår i: IEEE Electron Device Letters. - 0741-3106 .- 1558-0563. ; 39:3, s. 390-393
  • Tidskriftsartikel (refereegranskat)abstract
    • In-phase coherently coupled proton-implant-defined vertical cavity surface emitting laser (VCSEL) arrays face difficulties in current spreading, resulting in small array scale, low output power, and broad beamwidth. Although patterned metal grids can improve the current spreading, the undesirable out-of-phase mode tends to be dominant in the array. In this letter, by means of engineering the implantation and array parameters, in-phase mode is obtained in large-scale proton-implant-defined arrays with metal grids. Experimental results show that these arrays are operating in in-phase mode with a nominal interelement spacing of 8 μm and an implantation depth of 2.22 μm. By using these parameters, a 5 × 5 in-phase array with a narrow beamwidth (far-field full width at half maximum) of 1.61° is realized. Besides, a 10 × 10 in-phase array with a beamwidth of 1.89° and an output power of 10.25 mW for the in-phase mode is achieved. The calculation of far fields is performed to confirm the in-phase operation measured results. Such a simple and low-cost technology provides a promising method for preparing large-scale in-phase coherently coupled VCSEL arrays.
  •  
9.
  • Pan, Xun, et al. (författare)
  • Environmentally friendly preparation of nanoparticles for organic photovoltaics
  • 2018
  • Ingår i: Organic Electronics: physics, materials, applications. - : Elsevier BV. - 1566-1199. ; 59, s. 432-440
  • Tidskriftsartikel (refereegranskat)abstract
    • Aqueous nanoparticle dispersions were prepared from a conjugated polymer poly[thiophene-2,5-diyl-alt-5,10-bis((2-hexyldecyl)oxy)dithieno[3,2-c:3′,2′-h][1,5]naphthyridine-2,7-diyl] (PTNT) and fullerene blend utilizing chloroform as well as a non-chlorinated and environmentally benign solvent, o-xylene, as the miniemulsion dispersed phase solvent. The nanoparticles (NPs) in the solid-state film were found to coalesce and offered a smooth surface topography upon thermal annealing. Organic photovoltaics (OPVs) with photoactive layer processed from the nanoparticle dispersions prepared using chloroform as the miniemulsion dispersed phase solvent were found to have a power conversion efficiency (PCE) of 1.04%, which increased to 1.65% for devices utilizing NPs prepared from o-xylene. Physical, thermal and optical properties of NPs prepared using both chloroform and o-xylene were systematically studied using dynamic mechanical thermal analysis (DMTA) and photoluminescence (PL) spectroscopy and correlated to their photovoltaic properties. The PL results indicate different morphology of NPs in the solid state were achieved by varying miniemulsion dispersed phase solvent.
  •  
10.
  • Pan, Xun, et al. (författare)
  • Water/Ethanol Soluble p-Type Conjugated Polymers for the Use in Organic Photovoltaics
  • 2020
  • Ingår i: Frontiers in Materials. - : Frontiers Media SA. - 2296-8016. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • We have developed two series of p-type conjugated polymers based on poly[2,3-bis-(3-octyloxyphenyl)quinoxaline-5,8-diyl-alt-thiophene-2,5-diyl] (TQ1) polymeric backbone utilizing polar pendant groups, i.e., tertiary amine and pyridine, to achieve switchable solubility in water and ethanol. By balancing the ratio between polar and non-polar side-groups, we could combine green-solvent processability with the manufacturing of functional photovoltaic devices. Due to the unavailability of water/alcohol soluble acceptors, the photovoltaic performance of these new polymers was evaluated using organic solvent by incorporating PC61BM. For water/alcohol soluble partial amine-based polymers, we achieve a maximum power conversion efficiency (PCE) of ∼0.8% whereas alcohol soluble partial pyridine-based polymers show enhanced PCE of ∼1.3% with inverted device structure. We propose that the enhancement in PCE is a result of the reduction in amino-group content and the lower basicity of pyridine, both of which decrease the interaction between functionalized polymers with the anode interface material and reduce the miscibility of the donor and acceptor. Further improvement of the photovoltaic performance, in particular the open-circuit voltage (Voc), was achieved by using an anode buffer layer to mitigate the unfavorable interaction of the amino/pyridine groups with the MoO3 electrode. Our work demonstrated the possibility of substituent modification for conjugated polymers using tertiary amine and pyridine groups to achieve water/alcohol soluble and functional donor materials.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy