SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pandey Aditi) "

Sökning: WFRF:(Pandey Aditi)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Caretta, Martina Angela, et al. (författare)
  • Water
  • 2022
  • Ingår i: Climate Change 2022: Impacts, Adaptation and Vulnerability : Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change - Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)
  •  
2.
  • Gupta, Alok C., et al. (författare)
  • Multiband optical variability of the blazar OJ 287 during its outbursts in 2015-2016
  • 2017
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 465:4, s. 4423-4433
  • Tidskriftsartikel (refereegranskat)abstract
    • We present recent optical photometric observations of the blazar OJ 287 taken during 2015 September-2016 May. Our intense observations of the blazar started in 2015 November and continued until 2016 May and included detection of the large optical outburst in 2015 December that was predicted using the binary black hole model for OJ 287. For our observing campaign, we used a total of nine ground-based optical telescopes of which one is in Japan, one is in India, three are in Bulgaria, one is in Serbia, one is in Georgia, and two are in the USA. These observations were carried out in 102 nights with a total of similar to 1000 image frames in BVRI bands, though the majority were in the R band. We detected a second comparably strong flare in 2016 March. In addition, we investigated multiband flux variations, colour variations, and spectral changes in the blazar on diverse time-scales as they are useful in understanding the emission mechanisms. We briefly discuss the possible physical mechanisms most likely responsible for the observed flux, colour, and spectral variability.
  •  
3.
  • Kanhed, Satish, et al. (författare)
  • Microporous Hydroxyapatite Ceramic Composites as Tissue Engineering Scaffolds : An Experimental and Computational Study
  • 2018
  • Ingår i: Advanced Engineering Materials. - : Wiley. - 1438-1656 .- 1527-2648. ; 20:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Bone‐tissue engineering mandates the development of multi‐functional bioactive porous hydroxyapatite (HAp) scaffolds. Herein, microwave sintered HAp/ZnO and HAp/Ag composite scaffolds with ≈5–19% porosity are developed using 0–30 vol% graphite as a porogen. The mechanical properties of the porous scaffold are analyzed in detail, revealing that even being more porous, the reinforcement of ZnO (9% porosity, hardness of 2.8 GPa, and toughness of 3.5 MPa.m1/2) has shown to have better hardness and fracture toughness when compared to Ag (5% porosity, hardness of 1.6 GPa, and toughness of 2.6 MPa.m1/2). The flexural strength obtained experimentally are complemented with a finite‐element technique that adopts microstructural features in visualizing the effect of porosity on stress distribution. The antibacterial efficacy and cytocompatibility of these composites are validated by increased metabolic activity and conspicuous cell‐matrix interactions. The anticipation of the results reveal that HAp/ZnO (9% porosity) and HAp/Ag (5% porosity) composites can be used as a potential multi‐functional bone implant scaffolds.
  •  
4.
  • Kanhed, Satish, et al. (författare)
  • Porosity distribution affecting mechanical and biological behaviour of hydroxyapatite bioceramic composites
  • 2017
  • Ingår i: Ceramics International. - : Elsevier BV. - 0272-8842 .- 1873-3956. ; 43:13, s. 10442-10449
  • Tidskriftsartikel (refereegranskat)abstract
    • The present work aims to the study of developing porosity in hydroxyapatite (HAp) scaffold by using graphite porogen (with 0-30 vol%) followed by engineering the changes achieved by conventional- (CS) and microwave sintering (MS) techniques. The generated porosity was controlled between similar to 6-27% as the porogen concentration increases in HAp scaffold. Voronoi tessellation was utilized in order to evaluate the distribution of pores. The enhanced mechanical properties including fracture toughness (0.83 MPa m(1/2)), fracture strength (7.5 MPa), and hardness (183.7 VHN) were observed for microwave sintered HAp scaffold with 8% porosity. The fitting between porosity and fracture strength elicited that microwave sintered HAp with 8% porosity provides maximum crack-propagation resistance while restricting grain size (similar to 0.23 mu m) and eliciting high extent of sintering (similar to 1.34) because of their rapid heating rates. The cell viability (MTT assay) and cell culture confirm the cytocompatibility of porous HAp for application as bone implant that need accelerated replacement of bone tissues.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy