SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Panikov N.) "

Sökning: WFRF:(Panikov N.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Callaghan, TV, et al. (författare)
  • Key findings and extended summaries
  • 2004
  • Ingår i: Ambio: a Journal of Human Environment. - 0044-7447. ; 33:7, s. 386-392
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • Callaghan, T. V., et al. (författare)
  • Effects on the function of arctic ecosystems in the short- and long-term perspectives
  • 2004
  • Ingår i: Ambio: a Journal of Human Environment. - : Royal Swedish Academy of Sciences. - 0044-7447. ; 33, s. 448-458
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract in UndeterminedHistorically, the function of Arctic ecosystems in terms of cycles of nutrients and carbon has led to low levels of primary production and exchanges of energy, water and greenhouse gases have led to low local and regional cooling. Sequestration of carbon from atmospheric CO2, in extensive, cold organic soils and the high albedo from low, snow-covered vegetation have had impacts on regional climate. However, many aspects of the functioning of Arctic ecosystems are sensitive to changes in climate and its impacts on biodiversity. The current Arctic climate results in slow rates of organic matter decomposition. Arctic ecosystems therefore tend to accumulate organic matter and elements despite low inputs. As a result, soil-available elements like nitrogen and phosphorus are key limitations to increases in carbon fixation and further biomass and organic matter accumulation. Climate warming is expected to increase carbon and element turnover, particularly in soils, which may lead to initial losses of elements but eventual, slow recovery. Individual species and species diversity have clear impacts on element inputs and retention in Arctic ecosystems. Effects of increased CO2 and UV-B on whole ecosystems, on the other hand, are likely to be small although effects on plant tissue chemisty, decomposition and nitrogen fixation may become important in the long-term. Cycling of carbon in trace gas form is mainly as CO2 and CH4. Most carbon loss is in the form of CO2, produced by both plants and soil biota. Carbon emissions as methane from wet and moist tundra ecosystems are about 5% of emissions as CO2 and are responsive to warming in the absence of any other changes. Winter processes and vegetation type also affect CH4 emissions as well as exchanges of energy between biosphere and atmosphere. Arctic ecosystems exhibit the largest seasonal changes in energy exchange of any terrestrial ecosystem because of the large changes in albedo from late winter, when snow reflects most incoming radiation, to summer when the ecosystem absorbs most incoming radiation. Vegetation profoundly influences the water and energy exchange of Arctic ecosystems. Albedo during the period of snow cover declines from tundra to forest tundra to deciduous forest to evergreen forest. Shrubs and trees increase snow depth which in turn increases winter soil temperatures. Future changes in vegetation driven by climate change are therefore, very likely to profoundly alter regional climate.
  •  
3.
  • Christensen, Torben, et al. (författare)
  • Biotic controls on CO2 and CH4 exchange in wetlands - a closed environment study
  • 2003
  • Ingår i: Biogeochemistry. - 0168-2563 .- 1573-515X. ; 64:3, s. 337-354
  • Tidskriftsartikel (refereegranskat)abstract
    • Wetlands are significant sources of the important greenhouse gas CH4. Here we explore the use of an experimental system developed for the determination of continuous fluxes of CO2 and CH4 in closed ecosystem monoliths including the capture of (CO2)-C-14 and (CH4)-C-14 following pulse labelling with (CO2)-C-14. We show that, in the ecosystem studied, ebullition (bubble emission) may account for 18 to 50% of the total CH4 emission, representing fluxes that have been difficult to estimate accurately in the past. Furthermore, using plant removal and C-14 labelling techniques, we use the system to detail the direct influence of vascular plants on CH4 emission. This influence is observed to be dependent on the amount of vascular plants present. The results that may be produced using the presented experimental set-up have implications for an improved understanding of wetland ecosystem/atmosphere interactions, including possible feedback effects on climate change. In recent years much attention has been devoted to ascertaining and subsequently using the relationship between net ecosystem productivity and CH4 emission as a basis for extrapolation of fluxes across large areas. The experimental system presented may be used to study the complex relationship between vascular plants and CH4 emission and here we show examples of how this may vary considerably in nature between and even within ecosystems.
  •  
4.
  • Christensen, Torben, et al. (författare)
  • Factors controlling large scale variations in methane emissions from wetlands
  • 2003
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 30:7
  • Tidskriftsartikel (refereegranskat)abstract
    • [1] Global wetlands are, at estimate ranging 115-237 Tg CH4/yr, the largest single atmospheric source of the greenhouse gas methane (CH4). We present a dataset on CH4 flux rates totaling 12 measurement years at sites from Greenland, Iceland, Scandinavia and Siberia. We find that temperature and microbial substrate availability (expressed as the organic acid concentration in peat water) combined explain almost 100% of the variations in mean annual CH4 emissions. The temperature sensitivity of the CH4 emissions shown suggests a feedback mechanism on climate change that could validate incorporation in further developments of global circulation models.
  •  
5.
  • Panikov, N. S., et al. (författare)
  • Membrane probe array: Technique development and observation of CO2 and CH4 diurnal oscillations in peat profile
  • 2007
  • Ingår i: Soil Biology & Biochemistry. - : Elsevier BV. - 0038-0717. ; 39:7, s. 1712-1723
  • Tidskriftsartikel (refereegranskat)abstract
    • The purpose of this study was to monitor the dynamics of gases such as CO2 and CH4 in a soil profile with sufficient temporal resolution to observe possible diurnal variations. A computer-controlled device called a membrane probes array (MPA) was developed that consisted of 9-12 individual membrane probes installed at various soil depths. Each probe was made of a stainless steel pipe with a 1 mm orifice covered with a silicone membrane. Soil gases diffuse through the membrane at a rate proportional to the ambient soil gas concentration. To measure diffusion rates, the probes are flushed with N-2 one-by-one at regular time intervals and accumulated gas is detected as a spike with IR and FID analyzers. The longer the period between flushings the higher the gas accumulation and the lower the detection limit for a particular soil gas. The developed MPA agreed well with conventional manual gas sampling in West-Siberian mesotrophic fen. In peat cores with intact Carex-Sphagnum vegetation incubated under constant temperature, water level and artificial light:dark (14: 10) cycles, regular diurnal oscillations of soil CO2 and CH4 occurred in the upper part of the peat core down to 19 cm. Gas content in the top layer (3 cm) grew during the light phase, and returned back during the dark phase. In layers further down in the soil, the same events were observed but with progressively increased time delay and lower amplitude. The obtained data agreed with the hypothesis that diurnal variations in soil CO2 and CH4 content are caused by periodic changes in intensity of root exudation that provide a major C- and energy source for soil microorganisms including methanogens. At a soil depth of 23 cm, where the peak of gas bubbles occurred, the signal for both gases became chaotic and not related to the light:dark cycle.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy