SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Panizza Elena) "

Sökning: WFRF:(Panizza Elena)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Johansson, Henrik J., et al. (författare)
  • Retinoic acid receptor alpha is associated with tamoxifen resistance in breast cancer
  • 2013
  • Ingår i: Nature Communications. - : Nature Publishing Group: Nature Communications. - 2041-1723. ; 4:3175
  • Tidskriftsartikel (refereegranskat)abstract
    • About one-third of oestrogen receptor alpha-positive breast cancer patients treated with tamoxifen relapse. Here we identify the nuclear receptor retinoic acid receptor alpha as a marker of tamoxifen resistance. Using quantitative mass spectrometry-based proteomics, we show that retinoic acid receptor alpha protein networks and levels differ in a tamoxifen-sensitive (MCF7) and a tamoxifen-resistant (LCC2) cell line. High intratumoural retinoic acid receptor alpha protein levels also correlate with reduced relapse-free survival in oestrogen receptor alpha-positive breast cancer patients treated with adjuvant tamoxifen solely. A similar retinoic acid receptor alpha expression pattern is seen in a comparable independent patient cohort. An oestrogen receptor alpha and retinoic acid receptor alpha ligand screening reveals that tamoxifen-resistant LCC2 cells have increased sensitivity to retinoic acid receptor alpha ligands and are less sensitive to oestrogen receptor alpha ligands compared with MCF7 cells. Our data indicate that retinoic acid receptor alpha may be a novel therapeutic target and a predictive factor for oestrogen receptor alpha-positive breast cancer patients treated with adjuvant tamoxifen.
  •  
2.
  •  
3.
  • Panizza, Elena (författare)
  • Characterizing cancer cell signaling at the protein level : from targeted to proteome and phosphoproteome­‐wide analyses
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Proteins are the effectors of cellular functions and the constituting elements of cellular signaling cascades. The ability to analyze the abundances and the dynamics of proteins is central to dissect cellular signaling and its effects on cell physiology. The aim of this thesis is to gain insight into protein level regulatory mechanisms that contribute to the development of cancer, by optimizing and employing targeted and largescale methods. Specifically, to examine mechanisms regulating protein stability, localization, protein-protein interactions, and to characterize targets of a protein phosphatase enzymatic activity. Additionally, to optimize a workflow for quantitative phosphoproteomics analysis with the goal of improving the sensitivity and lower the requirement in terms of sample quantity of current methods. Study I elucidated a mechanism by which S100A4 interacts with p53 in the nucleus thereby promoting its degradation, and the effects of this interaction on the growth and survival of lung and cervix adenocarcinoma cell lines, by employing targeted methods for the analyses of protein stability, protein localization and protein-protein interactions. Study II elucidated a mechanism by which TRAP promotes metastasis-related cell properties in breast cancer cells via the TGFβ-pathway and CD44, by a combination of proteomics and phosphoproteomics analyses with targeted methods. Furthermore, a moderate-depth phosphoproteomic profiling of TRAP overexpressing cells was achieved by peptide fractionation by high-resolution isoelectric focusing (HiRIEF) on IPG strips pH range 2.5- 3.7, and provided a list of putative targets of TRAP phosphatase activity. Study III developed a workflow for in-depth quantitative phosphoproteomics analysis based on high-resolution isoelectric focusing (HiRIEF) fractionation on a wide pH range (2.5-10). The workflow employs phospho-enrichment by titanium dioxide coupled with isobaric labeling by TMT, and provides for good analytical depth and sensitivity, requiring a low amount of starting material. Application of this workflow for the analysis of cervix adenocarcinoma cells HeLa revealed 1,264 novel phosphorylation sites, of which 165 phospho-sites that are suggested to have a regulatory function during the mitotic phase, based on kinase-association analysis. In summary, the work presented in this thesis contributes to the collective effort of improving and applying targeted and large-scale methods for the analysis of protein level regulatory mechanisms, particularly by focusing on the optimization of a workflow for phosphoproteomics analysis. Development of these methods and improvements in integrating discovery and validation efforts, will be central in the coming years and offer unprecedented opportunities for increasing our understanding of life and to discover new treatments and cures for diseases.
  •  
4.
  • Panizza, Elena, et al. (författare)
  • Ouabain-regulated phosphoproteome reveals molecular mechanisms for Na+, K+-ATPase control of cell adhesion, proliferation, and survival
  • 2019
  • Ingår i: The FASEB Journal. - : FEDERATION AMER SOC EXP BIOL. - 0892-6638 .- 1530-6860. ; 33:9, s. 10193-10206
  • Tidskriftsartikel (refereegranskat)abstract
    • The ion pump Na+, K+-ATPase (NKA) is a receptor for the cardiotonic steroid ouabain. Subsaturating concentration of ouabain triggers intracellular calcium oscillations, stimulates cell proliferation and adhesion, and protects from apoptosis. However, it is controversial whether ouabain-bound NKA is considered a signal transducer. To address this question, we performed a global analysis of protein phosphorylation in COS-7 cells, identifying 2580 regulated phosphorylation events on 1242 proteins upon 10- and 20-min treatment with ouabain. Regulated phosphorylated proteins include the inositol triphosphate receptor and stromal interaction molecule, which are essential for initiating calcium oscillations. Hierarchical clustering revealed that ouabain triggers a structured phosphorylation response that occurs in a well-defined, time-dependent manner and affects specific cellular processes, including cell proliferation and cell-cell junctions. We additionally identify regulation of the phosphorylation of several calcium and calmodulin-dependent protein kinases (CAMKs), including 2 sites of CAMK type II-gamma (CAMK2G), a protein known to regulate apoptosis. To verify the significance of this result, CAMK2G was knocked down in primary kidney cells. CAMK2G knockdown impaired ouabain-dependent protection from apoptosis upon treatment with high glucose or serum deprivation. In conclusion, we establish NKA as the coordinator of a broad, tightly regulated phosphorylation response in cells and define CAMK2G as a downstream effector of NKA.-Panizza, E., Zhang, L., Fontana, J. M., Hamada, K., Svensson, D., Akkuratov, E. E., Scott, L., Mikoshiba, K., Brismar, H., Lehtio, J., Aperia, A. Ouabain-regulated phosphoproteome reveals molecular mechanisms for Na+, K+-ATPase control of cell adhesion, proliferation, and survival.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy