SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Panman Matthijs R 1983) "

Sökning: WFRF:(Panman Matthijs R 1983)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Berntsson, Oskar, 1989, et al. (författare)
  • Sequential conformational transitions and alpha-helical supercoiling regulate a sensor histidine kinase
  • 2017
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Sensor histidine kinases are central to sensing in bacteria and in plants. They usually contain sensor, linker, and kinase modules and the structure of many of these components is known. However, it is unclear how the kinase module is structurally regulated. Here, we use nano- to millisecond time-resolved X-ray scattering to visualize the solution structural changes that occur when the light-sensitive model histidine kinase YF1 is activated by blue light. We find that the coiled coil linker and the attached histidine kinase domains undergo a left handed rotation within microseconds. In a much slower second step, the kinase domains rearrange internally. This structural mechanism presents a template for signal transduction in sensor histidine kinases.
  •  
2.
  • Björling, Alexander, 1983, et al. (författare)
  • Structural photoactivation of a full-length bacterial phytochrome
  • 2016
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 2:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Phytochromes are light sensor proteins found in plants, bacteria, and fungi. They function by converting a photon absorption event into a conformational signal that propagates from the chromophore through the entire protein. However, the structure of the photoactivated state and the conformational changes that lead to it are not known. We report time-resolved x-ray scattering of the full-length phytochrome from Deinococcus radiodurans on micro-and millisecond time scales. We identify a twist of the histidine kinase output domains with respect to the chromophore-binding domains as the dominant change between the photoactivated and resting states. The time-resolved data further show that the structural changes up to the microsecond time scales are small and localized in the chromophore-binding domains. The global structural change occurs within a few milliseconds, coinciding with the formation of the spectroscopic meta-Rc state. Our findings establish key elements of the signaling mechanism of full-length bacterial phytochromes.
  •  
3.
  • Björling, Alexander, 1983, et al. (författare)
  • Ubiquitous Structural Signaling in Bacterial Phytochromes
  • 2015
  • Ingår i: Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185. ; 6:17, s. 3379-3383
  • Tidskriftsartikel (refereegranskat)abstract
    • The phytochrome family of light-switchable proteins has long been studied by biochemical, spectroscopic and crystallographic means, while a direct probe for global conformational signal propagation has been lacking. Using solution X-ray scattering, we find that the photosensory cores of several bacterial phytochromes undergo similar large-scale structural changes upon red-light excitation. The data establish that phytochromes with ordinary and inverted photocycles share a structural signaling mechanism and that a particular conserved histidine, previously proposed to be involved in signal propagation, in fact tunes photoresponse.
  •  
4.
  • Claesson, Elin, 1989, et al. (författare)
  • The primary structural photoresponse of phytochrome proteins captured by a femtosecond X-ray laser
  • 2020
  • Ingår i: eLife. - 2050-084X. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Phytochrome proteins control the growth, reproduction, and photosynthesis of plants, fungi, and bacteria. Light is detected by a bilin cofactor, but it remains elusive how this leads to activation of the protein through structural changes. We present serial femtosecond X-ray crystallographic data of the chromophore-binding domains of a bacterial phytochrome at delay times of 1 ps and 10 ps after photoexcitation. The data reveal a twist of the D-ring, which leads to partial detachment of the chromophore from the protein. Unexpectedly, the conserved so-called pyrrole water is photodissociated from the chromophore, concomitant with movement of the A-ring and a key signaling aspartate. The changes are wired together by ultrafast backbone and water movements around the chromophore, channeling them into signal transduction towards the output domains. We suggest that the observed collective changes are important for the phytochrome photoresponse, explaining the earliest steps of how plants, fungi and bacteria sense red light.
  •  
5.
  • Berntsson, Oskar, 1989, et al. (författare)
  • Photoactivation of Drosophila melanogaster cryptochrome through sequential conformational transitions
  • 2019
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 5:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Cryptochromes are blue-light photoreceptor proteins, which provide input to circadian clocks. The cryptochrome from Drosophila melanogaster (DmCry) modulates the degradation of Timeless and itself. It is unclear how light absorption by the chromophore and the subsequent redox reactions trigger these events. Here, we use nano- to millisecond time-resolved x-ray solution scattering to reveal the light-activated conformational changes in DmCry and the related (6-4) photolyase. DmCry undergoes a series of structural changes, culminating in the release of the carboxyl-terminal tail (CTT). The photolyase has a simpler structural response. We find that the CTT release in DmCry depends on pH. Mutation of a conserved histidine, important for the biochemical activity of DmCry, does not affect transduction of the structural signal to the CTT. Instead, molecular dynamics simulations suggest that it stabilizes the CTT in the resting-state conformation. Our structural photocycle unravels the first molecular events of signal transduction in an animal cryptochrome.
  •  
6.
  • Henry, Léocadie, et al. (författare)
  • New Light on the Mechanism of Phototransduction in Phototropin
  • 2020
  • Ingår i: Biochemistry. - : American Chemical Society (ACS). - 0006-2960 .- 1520-4995. ; 59:35, s. 3206-3215
  • Tidskriftsartikel (refereegranskat)abstract
    • Phototropins are photoreceptor proteins that regulate blue light-dependent biological processes for efficient photosynthesis in plants and algae. The proteins consist of a photosensory domain that responds to the ambient light and an output module that triggers cellular responses. The photosensory domain of phototropin from Chlamydomonas reinhardtii contains two conserved LOV (light-oxygen-voltage) domains with flavin chromophores. Blue light triggers the formation of a covalent cysteine-flavin adduct and upregulates the phototropin kinase activity. Little is known about the structural mechanism that leads to kinase activation and how the two LOV domains contribute to this. Here, we investigate the role of the LOV1 domain from C. reinhardtii phototropin by characterizing the structural changes occurring after blue light illumination with nano- to millisecond time-resolved X-ray solution scattering. By structurally fitting the data with atomic models generated by molecular dynamics simulations, we find that adduct formation induces a rearrangement of the hydrogen bond network from the buried chromophore to the protein surface. In particular, the change in conformation and the associated hydrogen bonding of the conserved glutamine 120 induce a global movement of the beta-sheet, ultimately driving a change in the electrostatic potential on the protein surface. On the basis of the change in the electrostatics, we propose a structural model of how LOV1 and LOV2 domains interact and regulate the full-length phototropin from C. reinhardtii. This provides a rationale for how LOV photosensor proteins function and contributes to the optimal design of optogenetic tools based on LOV domains.
  •  
7.
  • Henry, Léocadie, et al. (författare)
  • Real-time tracking of protein unfolding with time-resolved x-ray solution scattering
  • 2020
  • Ingår i: Structural Dynamics. - : AIP Publishing. - 2329-7778. ; 7:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The correct folding of proteins is of paramount importance for their function, and protein misfolding is believed to be the primary cause of a wide range of diseases. Protein folding has been investigated with time-averaged methods and time-resolved spectroscopy, but observing the structural dynamics of the unfolding process in real-time is challenging. Here, we demonstrate an approach to directly reveal the structural changes in the unfolding reaction. We use nano- to millisecond time-resolved x-ray solution scattering to probe the unfolding of apomyoglobin. The unfolding reaction was triggered using a temperature jump, which was induced by a nanosecond laser pulse. We demonstrate a new strategy to interpret time-resolved x-ray solution scattering data, which evaluates ensembles of structures obtained from molecular dynamics simulations. We find that apomyoglobin passes three states when unfolding, which we characterize as native, molten globule, and unfolded. The molten globule dominates the population under the conditions investigated herein, whereas native and unfolded structures primarily contribute before the laser jump and 30 mu s after it, respectively. The molten globule retains much of the native structure but shows a dynamic pattern of inter-residue contacts. Our study demonstrates a new strategy to directly observe structural changes over the cause of the unfolding reaction, providing time- and spatially resolved atomic details of the folding mechanism of globular proteins. (C) 2020 Author(s).
  •  
8.
  • Nimmrich, Amke, 1995, et al. (författare)
  • Solvent-Dependent Structural Dynamics in the Ultrafast Photodissociation Reaction of Triiodide Observed with Time-Resolved X-ray Solution Scattering
  • 2023
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 145:29, s. 15754-15765
  • Tidskriftsartikel (refereegranskat)abstract
    • Resolving the structural dynamics of bond breaking, bond formation, and solvation is required for a deeper understanding of solutionphase chemical reactions. In this work, we investigate the photodissociation of triiodide in four solvents using femtosecond time-resolved X-ray solution scattering following 400 nm photoexcitation. Structural analysis of the scattering data resolves the solvent-dependent structural evolution during the bond cleavage, internal rearrangements, solvent-cage escape, and bond reformation in real time. The nature and structure of the reaction intermediates during the recombination are determined, elucidating the full mechanism of photodissociation and recombination on ultrafast time scales. We resolve the structure of the precursor state for recombination as a geminate pair. Further, we determine the size of the solvent cages from the refined structures of the radical pair. The observed structural dynamics present a comprehensive picture of the solvent influence on structure and dynamics of dissociation reactions.
  •  
9.
  • Takala, Heikki, et al. (författare)
  • Light-induced structural changes in a monomeric bacteriophytochrome
  • 2016
  • Ingår i: Structural Dynamics. - : AIP Publishing. - 2329-7778. ; 3:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Phytochromes sense red light in plants and various microorganism. Light absorption causes structural changes within the protein, which alter its biochemical activity. Bacterial phytochromes are dimeric proteins, but the functional relevance of this arrangement remains unclear. Here, we use time-resolved X-ray scattering to reveal the solution structural change of a monomeric variant of the photosensory core module of the phytochrome from Deinococcus radiodurans. The data reveal two motions, a bend and a twist of the PHY domain with respect to the chromophore-binding domains. Infrared spectroscopy shows the refolding of the PHY tongue. We conclude that a monomer of the phytochrome photosensory core is sufficient to perform the light-induced structural changes. This implies that allosteric cooperation with the other monomer is not needed for structural activation. The dimeric arrangement may instead be intrinsic to the biochemical output domains of bacterial phytochromes. © Author(s) 2016.
  •  
10.
  • Takala, H., et al. (författare)
  • On the (un)coupling of the chromophore, tongue interactions, and overall conformation in a bacterial phytochrome
  • 2018
  • Ingår i: Journal of Biological Chemistry. - 0021-9258. ; 293:21, s. 8161-8172
  • Tidskriftsartikel (refereegranskat)abstract
    • Phytochromes are photoreceptors in plants, fungi, and various microorganisms and cycle between metastable red light-absorbing (Pr) and far-red light-absorbing (Pfr) states. Their light responses are thought to follow a conserved structural mechanism that is triggered by isomerization of the chromophore. Downstream structural changes involve refolding of the so-called tongue extension of the phytochrome-specific GAF-related (PHY) domain of the photoreceptor. The tongue is connected to the chromophore by conserved DIP and PRXSF motifs and a conserved tyrosine, but the role of these residues in signal transduction is not clear. Here, we examine the tongue interactions and their interplay with the chromophore by substituting the conserved tyrosine (Tyr(263)) in the phytochrome from the extremophile bacterium Deinococcus radiodurans with phenylalanine. Using optical and FTIR spectroscopy, X-ray solution scattering, and crystallography of chromophore-binding domain (CBD) and CBD-PHY fragments, we show that the absence of the Tyr(263) hydroxyl destabilizes the -sheet conformation of the tongue. This allowed the phytochrome to adopt an -helical tongue conformation regardless of the chromophore state, hence distorting the activity state of the protein. Our crystal structures further revealed that water interactions are missing in the Y263F mutant, correlating with a decrease of the photoconversion yield and underpinning the functional role of Tyr(263) in phytochrome conformational changes. We propose a model in which isomerization of the chromophore, refolding of the tongue, and globular conformational changes are represented as weakly coupled equilibria. The results also suggest that the phytochromes have several redundant signaling routes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy