SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Papadogiannakis Seméli) "

Sökning: WFRF:(Papadogiannakis Seméli)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Amanullah, Rahman, et al. (författare)
  • Diversity in extinction laws of Type Ia supernovae measured between 0.2 and 2 μm
  • 2015
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 453:3, s. 3300-3328
  • Tidskriftsartikel (refereegranskat)abstract
    • We present ultraviolet (UV) observations of six nearby Type Ia supernovae (SNe Ia) obtained with the Hubble Space Telescope, three of which were also observed in the near-IR (NIR) with Wide-Field Camera 3. UV observations with the Swift satellite, as well as ground-based optical and NIR data provide complementary information. The combined data set covers the wavelength range 0.2-2 mu m. By also including archival data of SN 2014J, we analyse a sample spanning observed colour excesses up to E(B - V) = 1.4 mag. We study the wavelength-dependent extinction of each individual SN and find a diversity of reddening laws when characterized by the total-to-selective extinction R-V. In particular, we note that for the two SNe with E(B - V) greater than or similar to 1 mag, for which the colour excess is dominated by dust extinction, we find R-V = 1.4 +/- 0.1 and R-V = 2.8 +/- 0.1. Adding UV photometry reduces the uncertainty of fitted R-V by similar to 50 per cent allowing us to also measure R-V of individual low-extinction objects which point to a similar diversity, currently not accounted for in the analyses when SNe Ia are used for studying the expansion history of the Universe.
  •  
2.
  • Bulla, Mattia, et al. (författare)
  • ZTF Early Observations of Type Ia Supernovae. III. Early-time Colors As a Test for Explosion Models and Multiple Populations
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 902:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Colors of Type Ia supernovae (SNe Ia) in the first few days after explosion provide a potential discriminant between different models. In this paper, we present g - r colors of 65 SNe Ia discovered within 5 days from first light by the Zwicky Transient Facility in 2018, a sample that is about three times larger than that in the literature. We find that g - r colors are intrinsically rather homogeneous at early phases, with about half of the dispersion attributable to photometric uncertainties (0.18 mag). Colors are nearly constant starting from 6 days after first light (g-r similar to -0.15 mag), while the time evolution at earlier epochs is characterized by a continuous range of slopes, from events rapidly transitioning from redder to bluer colors (slope of similar to-0.25 mag day(-1)) to events with a flatter evolution. The continuum in the slope distribution is in good agreement both with models requiring some amount of Ni-56 mixed in the outermost regions of the ejecta and with double-detonation models having thin helium layers (M-He = 0.01 M-circle dot) and varying carbon-oxygen core masses. At the same time, six events show evidence for a distinctive red bump signature predicted by double-detonation models with larger helium masses. We finally identify a significant correlation between the early-timeg - rslopes and supernova brightness, with brighter events associated to flatter color evolution (p-value = 0.006). The distribution of slopes, however, is consistent with being drawn from a single population, with no evidence for two components as claimed in the literature based on B - V colors.
  •  
3.
  • Cao, Yi, et al. (författare)
  • SN2002es-LIKE SUPERNOVAE FROM DIFFERENT VIEWING ANGLES
  • 2016
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 832:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In this article, we compare optical light curves of two SN2002es-like Type Ia supernovae (SNe), iPTF14atg and iPTF14dpk, from the intermediate Palomar Transient Factory. Although the two light curves resemble each other around and after maximum, they show distinct early-phase rise behavior in the r-band. On the one hand, iPTF14atg revealed a slow and steady rise that lasted for 22 days with a mean rise rate of 0.2-0.3 mag day(-1), before it reached the R-band peak (- 18.05 mag). On the other hand, iPTF14dpk rose rapidly to - 17 mag within a day of discovery with a rise rate > 1.8 mag day(-1), and then rose slowly to its peak (- 18.19 mag) with a rise rate similar to iPTF14atg. The apparent total rise time of iPTF14dpk is therefore only 16 days. We show that emission from iPTF14atg before - 17 days with respect to its maximum can be entirely attributed to radiation produced by collision between the SN and its companion star. Such emission is absent from iPTF14dpk probably because of an unfavored viewing angle, provided that SN2002es-like events arise from the same progenitor channel. We further show that an SN2002es-like SN may experience a dark phase after the explosion but before its radioactively powered light curve becomes visible. This dark phase may be lit by radiation from supernova-companion interaction.
  •  
4.
  • Dhawan, Suhail, et al. (författare)
  • iPTF16abc and the population of Type Ia supernovae : comparing the photospheric, transitional, and nebular phases
  • 2018
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 480:2, s. 1445-1456
  • Tidskriftsartikel (refereegranskat)abstract
    • Key information about the progenitor system and the explosion mechanism of Type Ia supernovae (SNe Ia) can be obtained from early observations, within a few days from explosion. iPTF16abc was discovered as a young SN Ia with excellent early time data. Here, we present photometry and spectroscopy of the SN in the nebular phase. A comparison of the early time data with a sample of SNe Ia shows distinct features, differing from normal SNe Ia at early phases but similar to normal SNe Ia at a few weeks after maximum light (i.e. the transitional phase) and well into the nebular phase. The transparency time-scales (t0) for this sample of SNe Ia range between ∼25 and 41 d indicating a diversity in the ejecta masses. t0 also weakly correlates with the peak bolometric luminosity, consistent with the interpretation that SNe with higher ejecta masses would produce more 56Ni" role="presentation">56Ni . Comparing the t0 and the maximum luminosity, Lmax distribution of a sample of SNe Ia to predictions from a wide range of explosion models we find an indication that the sub-Chandrasekhar mass models span the range of observed values. However, the bright end of the distribution can be better explained by Chandrasekhar mass delayed detonation models, hinting at multiple progenitor channels to explain the observed bolometric properties of SNe Ia. iPTF16abc appears to be consistent with the predictions from the Mch models.
  •  
5.
  • Goobar, Ariel, et al. (författare)
  • iPTF16geu : A multiply imaged, gravitationally lensed type Ia supernova
  • 2017
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 356:6335, s. 291-295
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of a multiply imaged, gravitationally lensed type Ia supernova, iPTF16geu (SN 2016geu), at redshift z = 0.409. This phenomenon was identified because the light from the stellar explosion was magnified more than 50 times by the curvature of space around matter in an intervening galaxy. We used high-spatial-resolution observations to resolve four images of the lensed supernova, approximately 0.3 arc seconds from the center of the foreground galaxy. The observations probe a physical scale of ~1 kiloparsec, smaller than is typical in other studies of extragalactic gravitational lensing. The large magnification and symmetric image configuration imply close alignment between the lines of sight to the supernova and to the lens. The relative magnifications of the four images provide evidence for substructures in the lensing galaxy.
  •  
6.
  • Goobar, Ariel, et al. (författare)
  • THE RISE OF SN 2014J IN THE NEARBY GALAXY M82
  • 2014
  • Ingår i: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 784:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the discovery of SN 2014J in the nearby galaxy M82. Given its proximity, it offers the best opportunity to date to study a thermonuclear supernova (SN) over a wide range of the electromagnetic spectrum. Optical, near-IR, and mid-IR observations on the rising light curve, orchestrated by the intermediate Palomar Transient Factory, show that SN 2014J is a spectroscopically normal Type Ia supernova (SN Ia), albeit exhibiting high-velocity features in its spectrum and heavily reddened by dust in the host galaxy. Our earliest detections start just hours after the fitted time of explosion. We use high-resolution optical spectroscopy to analyze the dense intervening material and do not detect any evolution in the resolved absorption features during the light curve rise. Similar to other highly reddened SNe Ia, a low value of total-to-selective extinction, R-V less than or similar to 2, provides the best match to our observations. We also study pre-explosion optical and near-IR images from Hubble Space Telescope with special emphasis on the sources nearest to the SN location.
  •  
7.
  • Johansson, Joel, et al. (författare)
  • Spectroscopy of the first resolved strongly lensed Type Ia supernova iPTF16geu
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 502:1, s. 510-520
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the results from spectroscopic observations of the multiple images of the strongly lensed Type Ia supernova (SN Ia), iPTF16geu, obtained with ground-based telescopes and the Hubble Space Telescope (HST). From a single epoch of slitless spectroscopy with HST, we resolve spectra of individual lensed supernova images for the first time. This allows us to perform an independent measurement of the time-delay between the two brightest images, Delta t = 1.4 +/- 5.0 d, which is consistent with the time-delay measured from the light curves. We also present measurements of narrow emission and absorption lines characterizing the interstellar medium in the SN Ia host galaxy at z = 0.4087, as well as in the foreground lensing galaxy at z = 0.2163. We detect strong Naid absorption in the host galaxy, indicating that iPTF16geu belongs to a subclass of SNe Ia displaying 'anomalously' large Naid column densities compared to dust extinction derived from light curves. For the lens galaxy, we refine the measurement of the velocity dispersion, sigma = 129 +/- 4 kms(-1), which significantly constrains the lens model. We use ground-based spectroscopy, boosted by a factor similar to 70 from lensing magnification, to study the properties of a high-z SN Ia with unprecedented signal-to-noise ratio. The spectral properties of the supernova, such as pseudo-Equivalent widths of several absorption features and velocities of the Si II-line, indicate that iPTF16geu is a normal SN Ia. We do not detect any significant deviations of the SN spectral energy distribution from microlensing of the SN photosphere by stars and compact objects in the lensing galaxy.
  •  
8.
  • Nyholm, Anders, 1985-, et al. (författare)
  • Type IIn supernova light-curve properties measured from an untargeted survey sample
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 637
  • Tidskriftsartikel (refereegranskat)abstract
    • The evolution of a Type IIn supernova (SN IIn) is governed by the interaction between the SN ejecta and a hydrogen-rich circumstellar medium. The SNe IIn thus allow us to probe the late-time mass-loss history of their progenitor stars. We present a sample of SNe IIn from the untargeted, magnitude-limited surveys of the Palomar Transient Factory (PTF) and its successor, the intermediate PTF (iPTF). To date, statistics on SN IIn optical light-curve properties have generally been based on small (≲ 10 SNe) samples from targeted SN surveys. The SNe IIn found and followed by the PTF/iPTF were used to select a sample of 42 events with useful constraints on the rise times as well as with available post-peak photometry. The sample SNe were discovered in 2009-2016 and have at least one low-resolution classification spectrum, as well as photometry from the P48 and P60 telescopes at Palomar Observatory. We study the light-curve properties of these SNe IIn using spline fits (for the peak and the declining portion) and template matching (for the rising portion). We study the peak-magnitude distribution, rise times, decline rates, colour evolution, host galaxies, and K-corrections of the SNe in our sample. We find that the typical rise times are divided into fast and slow risers at 20±6 d and 50±11 d, respectively. The decline rates are possibly divided into two clusters (with slopes 0.013 ± 0.006 mag d^-1 and 0.040±0.010 mag d^-1), but this division has weak statistical significance. We find no significant correlation between the peak luminosity of SNe IIn and their rise times, but the more luminous SNe IIn are generally found to be more long-lasting. Slowly rising SNe IIn are generally found to decline slowly. The SNe in our sample were hosted by galaxies of absolute magnitude -22 ≲ M_g ≲ -13 mag. The K-corrections at light-curve peak of the SNe IIn in our sample are found to be within 0.2 mag for the observer's frame r-band, for SNe at redshifts z < 0.25. By applying K-corrections and also including ostensibly "superluminous" SNe IIn, we find that the peak magnitudes are M_peak^r = -19.18±1.32 mag. We conclude that the occurrence of conspicuous light-curve bumps in SNe IIn, such as in iPTF13z, are limited to 1.4+14.6−1.0 % of the SNe IIn. We also investigate a possible sub-type of SNe IIn with a fast rise to a ≳ 50 d plateau followed by a slow, linear decline.
  •  
9.
  • Papadogiannakis, Seméli, et al. (författare)
  • Characterizing the secondary maximum in the r-band for Type Ia supernovae : diagnostic for the ejecta mass
  • 2019
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 485:2, s. 2343-2354
  • Tidskriftsartikel (refereegranskat)abstract
    • An increase in the number of studied Type Ia supernovae (SNe Ia) has demonstrated that this class of explosions has a greater diversity in its observables than was previously assumed. The reasons (e.g. the explosion mechanism, progenitor system) for such a diversity remain unknown. Here, we analyse a sample of r-band light curves of SNe Ia, focusing on their behaviour similar to 2-4 weeks after maximum light, i.e. the second maximum. We characterize the second maximum by its timing (t(r2)) and the integrated flux ((F) over bar (r2)). We find that t(r2) correlates with the 'colour-stretch' parameter s(BV), which can be used as a proxy for Ni-56 mass, and (F) over bar (r2) correlates with the transparency time-scale, t(0). Using (F) over bar (r2) for a sample of 199 SNe from the Palomar Transient Factory and intermediate Palomar Transient Factory, we evaluate a distribution on t(0) for a sample of SNe Ia found in an 'untargeted' survey. Comparing this distribution to the predictions of t(0) ranges from models we find that the largest overlap in t(0) values between models and observations is for the sub-Chandrasekhar double detonation models. We also compare our relations between t(0) and (F) over bar (r2) with that from the 1D explosion models of Goldstein & Kasen and confirm that (F) over bar (r2) can be used as a diagnostic of the total ejecta mass.
  •  
10.
  • Papadogiannakis, Seméli, 1989- (författare)
  • Properties of Type Ia Supernovae : From the (intermediate) Palomar Transient Factory
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Type Ia Supernovae (SNe) have been used to discover the accelerated expansion of the universe but many open questions remain unanswered. These include the stellar progenitor, extinction and possible systematic trends in the supernova brightness for different host galaxy environments or cosmic time. In this thesis we attempt to address these open questions by looking at a large homogeneous sample of nearby SNe from the Palomar Transient Factory (2009-2012) and the intermediate Palomar Transient Factory (2013-2017) for which we have 265 well-observed light-curves in the R-band and 2981 spectra from a total of 2060 SNe.In Paper I we study the global properties of the R-band light-curves, such as rise-time, stretch and intrinsic brightness at different SN phases, to examine if there are multiple populations in any of the parameters suggesting different progenitor channels. We do not find evidence supporting this. We characterize the second maximum in the R-band in Paper II and find a correlation between the time from light-curve maximum, and the "colour-stretch" parameter, a proxy for 56Ni mass. We also found that the integrated flux under the second maximum, correlates with the transparency timescale, a proxy for total ejecta mass. Using these two relations we find that sub-Chandrasekhar double detonation models can account for the biggest fraction of the PTF/iPTF SNe light-curves properties. In Paper III we present the spectroscopic sample of PTF/iPTF and using automatic machine learning tools to explore spectral features and possible connection to photometric and host galaxy properties.Paper IV focuses on a small sample of SNe, with multi-wavelength light-curves, to address one of the most important systematic uncertainties in supernova cosmology: extinction by dust in the line-of-sights. We found a diversity in the reddening laws as characterised by the total-to-selective extinction, RV. Finally, Paper V looks at a strongly lensed SNIa at z=1.4  to see if there is evolution of its spectral and photometric properties over cosmic time. Both Paper IV and Paper V use the code developed for Paper III to analyse spectra.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy