SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Paquet Durand F) "

Sökning: WFRF:(Paquet Durand F)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Paquet-Durand, F., et al. (författare)
  • How Long Does a Photoreceptor Cell Take to Die? Implications for the Causative Cell Death Mechanisms
  • 2014
  • Ingår i: Advances in Experimental Medicine and Biology. - New York, NY : Springer New York. - 0065-2598. ; 801, s. 575-581
  • Tidskriftsartikel (refereegranskat)abstract
    • The duration of cell death may allow deducing the underlying degenerative mechanism. To find out how long a photoreceptor takes to die, we used the rdl mouse model for retinal neurodegeneration, which is characterized by phosphodiesterase-6 (PDE6) dysfunction and photoreceptor death triggered by high cGMP levels. Based on cellular data on the progression of cGMP accumulation, cell death, and survival, we created a mathematical model to simulate the temporal development of the degeneration and the clearance of dead cells. Both cellular data and modelling suggested that at the level of the individual cell, the degenerative process was rather slow, taking around 80 h to complete. Organotypic retinal explant cultures derived from wild-type animals and exposed to the selective PDE6 inhibitor zaprinast, confirmed the surprisingly long duration of an individual photoreceptor cell's death. We briefly discuss the possibility to link different cell death stages and their temporal progression to specific enzymatic activities known to be causally connected to cell death. This in turn opens up new perspectives for the treatment of inherited retinal degeneration, both in terms of therapeutic targets and temporal windows-of-opportunity.
  •  
2.
  • Sahaboglu, A., et al. (författare)
  • Retinitis pigmentosa: rapid neurodegeneration is governed by slow cell death mechanisms
  • 2013
  • Ingår i: Cell Death & Disease. - : Springer Science and Business Media LLC. - 2041-4889. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • For most neurodegenerative diseases the precise duration of an individual cell's death is unknown, which is an obstacle when counteractive measures are being considered. To address this, we used the rd1 mouse model for retinal neurodegeneration, characterized by phosphodiesterase-6 (PDE6) dysfunction and photoreceptor death triggered by high cyclic guanosinemono-phosphate (cGMP) levels. Using cellular data on cGMP accumulation, cell death, and survival, we created mathematical models to simulate the temporal development of the degeneration. We validated model predictions using organotypic retinal explant cultures derived from wild-type animals and exposed to the selective PDE6 inhibitor zaprinast. Together, photoreceptor data and modeling for the first time delineated three major cell death phases in a complex neuronal tissue: (1) initiation, taking up to 36 h, (2) execution, lasting another 40 h, and finally (3) clearance, lasting about 7 h. Surprisingly, photoreceptor neurodegeneration was noticeably slower than necrosis or apoptosis, suggesting a different mechanism of death for these neurons. Cell Death and Disease (2013) 4, e488; doi: 10.1038/cddis.2013.12; published online 7 February 2013
  •  
3.
  • Bujakowska, Kinga, et al. (författare)
  • Study of Gene-Targeted Mouse Models of Splicing Factor Gene Prpf31 Implicated in Human Autosomal Dominant Retinitis Pigmentosa (RP)
  • 2009
  • Ingår i: Investigative Ophthalmology & Visual Science. - : Association for Research in Vision and Ophthalmology (ARVO). - 1552-5783. ; 50:12, s. 5927-5933
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE. Pre-mRNA processing factor 31 (PRPF31) is a ubiquitous protein needed for the assembly of the pre-mRNA splicing machinery. It has been shown that mutations in this gene cause autosomal dominant retinitis pigmentosa 11 (RP11), which is characterized by rod-cell degeneration. Interestingly, mutations in this ubiquitously expressed gene do not lead to phenotypes other than retinal malfunction. Furthermore, the dominant inheritance pattern has shown incomplete penetrance, which poses interesting questions about the disease mechanism of RP11. METHODS. To characterize PRPF31 function in the rod cells, two animal models have been generated. One was a heterozygous knock-in mouse (Prpf31(A216P/+)) carrying a point mutation p.A216P, which has previously been identified in RP11 patients. The second was a heterozygous knockout mouse (Prpf31(+/-)). Retinal degeneration in RP11 mouse models was monitored by electroretinography and histology. RESULTS. Generation of the mouse models is presented, as are results of ERGs and retinal morphology. No degenerative phenotype on fundus examination was found in Prpf31(A216P/+) and Prpf31(+/-) mice. Prpf31(A216P/A216P) and Prpf31(-/-) genotypes were embryonic lethal. CONCLUSIONS. The results imply that Prpf31 is necessary for survival, and there is no compensation mechanism in mouse for the lack of this splicing factor. The authors suggest that p.A216P mutation in Prpf31 does not exert a dominant negative effect and that one Prpf31 wild-type allele is sufficient for maintenance of the healthy retina in mice.
  •  
4.
  • Paquet-Durand, F., et al. (författare)
  • Systemic and intraocular administration of the liposomal formulation of the cyclic GMP analogue CN03 : An exploratory safety and tolerability study in non-human primates
  • 2019
  • Ingår i: Investigative Ophthalmology and Visual Science. - : ASSOC RESEARCH VISION OPHTHALMOLOGY INC. - 0146-0404 .- 1552-5783. ; 60:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose : The cGMP analogue CN03 targets cGMP signalling, a disease driver common to different types of retinal degeneration. For efficient targeting to the neuroretina CN03 was combined with a liposomal (LP) drug delivery system. In rodents, LP-CN03 has shown significant photoreceptor protection and preservation of in vivo retinal function, without major adverse events. The objective of the study was to determine the toxicity of CN03 and LP-CN03, following intravitreal (IVT) or intravenous (IV) administration. IVT administration is the intended human therapeutic route, IV injection was tested to investigate systemic toxicity.Methods : Cynomolgus monkeys were assigned to five different groups, consisting of one male and one female (n=2). Group 1 served as saline control for IVT and IV dosing, group 2 served as liposome (LP) control. Groups 3 and 4 received IVT injections of either 1X or 10X of the intended therapeutic dose, of either LP-CN03 (left eye) or CN03 (right). Group 5 received 100X IV bolus injections of LP-CN03 (Day 1) and CN03 (Day 25). Toxicity was assessed based on clinical observations, body weights, ophthalmology, intraocular pressure (IOP), electroretinography (ERG), and clinical and anatomic pathology.Results : IVT administration of LP caused transient white opacity in the vitreous body of all treated eyes, related to the milky consistency of LP. IVT injection of 1X and 10X CN03 was well-tolerated and only showed temporary pupil dilation in one male. IVT injection of 1X and 10X LP-CN03 was additionally associated with particles in the anterior chamber and vitreous body. At 10X, pigmented dots were also noted in the anterior lens capsule. IV injection of 100X LP-CN03 and CN03 was well tolerated and did not cause systemic toxicity. Comparison of pre- and post-dosing ERG did not reveal significant differences (p>0.05) in any of the groups, nor were there any indications of pathological changes in retinal morphology.Conclusions : IVT injection of CN03 and LP-CN03 at the intended therapeutic dose was not associated with any changes in ophthalmoscopy, electroretinography or histopathology, and only revealed slight pupil dilation in one animal. IV slow bolus injection at 100X the intended therapeutic dose was well tolerated.
  •  
5.
  •  
6.
  • Sancho-Pelluz, J., et al. (författare)
  • Excessive HDAC activation is critical for neurodegeneration in the rd1 mouse
  • 2010
  • Ingår i: Cell Death & Disease. - : Springer Science and Business Media LLC. - 2041-4889. ; 1
  • Tidskriftsartikel (refereegranskat)abstract
    • Inherited retinal degenerations, collectively termed retinitis pigmentosa (RP), constitute one of the leading causes of blindness in the developed world. RP is at present untreatable and the underlying neurodegenerative mechanisms are unknown, even though the genetic causes are often established. Acetylation and deacetylation of histones, carried out by histone acetyltransferases (HATs) and histone deacetylases (HDACs), respectively, affects cellular division, differentiation, death and survival. We found acetylation of histones and probably other proteins to be dramatically reduced in degenerating photoreceptors in the rd1 human homologous mouse model for RP. Using a custom developed in situ HDAC activity assay, we show that overactivation of HDAC classes I/II temporally precedes photoreceptor degeneration. Moreover, pharmacological inhibition of HDACs I/II activity in rd1 organotypic retinal explants decreased activity of poly-ADP-ribose-polymerase and strongly reduced photoreceptor cell death. These findings highlight the importance of protein acetylation for photoreceptor cell death and survival and propose certain HDAC classes as novel targets for the pharmacological intervention in RP. Cell Death and Disease (2010) 1, e24; doi:10.1038/cddis.2010.4; published online 11 February 2010
  •  
7.
  • Sancho-Pelluz, J., et al. (författare)
  • Photoreceptor Cell Death Mechanisms in Inherited Retinal Degeneration
  • 2008
  • Ingår i: Molecular Neurobiology. - : Springer Science and Business Media LLC. - 1559-1182 .- 0893-7648. ; 38:3, s. 253-269
  • Forskningsöversikt (refereegranskat)abstract
    • Photoreceptor cell death is the major hallmark of a group of human inherited retinal degenerations commonly referred to as retinitis pigmentosa (RP). Although the causative genetic mutations are often known, the mechanisms leading to photoreceptor degeneration remain poorly defined. Previous research work has focused on apoptosis, but recent evidence suggests that photoreceptor cell death may result primarily from non-apoptotic mechanisms independently of AP1 or p53 transcription factor activity, Bcl proteins, caspases, or cytochrome c release. This review briefly describes some animal models used for studies of retinal degeneration, with particular focus on the rd1 mouse. After outlining the major features of different cell death mechanisms in general, we then compare them with results obtained in retinal degeneration models, where photoreceptor cell death appears to be governed by, among other things, changes in cyclic nucleotide metabolism, downregulation of the transcription factor CREB, and excessive activation of calpain and PARP. Based on recent experimental evidence, we propose a putative non-apoptotic molecular pathway for photoreceptor cell death in the rd1 retina. The notion that inherited photoreceptor cell death is driven by non-apoptotic mechanisms may provide new ideas for future treatment of RP.
  •  
8.
  • Ekström, Per, et al. (författare)
  • Novel In Situ Activity Assays for the Quantitative Molecular Analysis of Neurodegenerative Processes in the Retina
  • 2014
  • Ingår i: Current Medicinal Chemistry. - : Bentham Science Publishers Ltd.. - 0929-8673. ; 21:30, s. 3478-3493
  • Tidskriftsartikel (refereegranskat)abstract
    • The mechanisms of neuronal cell death are still only poorly understood, which has hindered the advancement of therapies for many currently untreatable neurodegenerative diseases. This calls for the development of new methods which reveal critical molecular mechanisms of the celldeath machinery with both high sensitivity and cellular resolution. Using animal models for hereditary neurodegeneration in the retina, we have developed or adapted different biochemical assays to determine the enzymatic activities of calpain, poly-ADP-ribose-polymerase (PARP), and histone deacetylase (HDAC) directly and in situ. Additionally, the enzymatic activity of cGMP-dependent protein kinase (PKG) was assessed indirectly using in situ immunohistological techniques to detect PKG-activity-dependent products. Combining these assays with in situ cell death markers revealed close temporospatial correlations, suggesting causal connections between the PKG, HDAC, PARP and calpain activities and neuronal cell death. Using different pharmacological and genetic manipulations, causality could indeed be demonstrated. Surprisingly, the often dramatic rises in metabolic activities didnot match by corresponding increases in expression, highlighting the importance of analyses of protein activities at the cellular level. The above mentioned studies identified a number of metabolic processes previously unknownto be involved in inherited retinal degeneration. Comparing different animal retinal degeneration models uncovered striking similarities in enzymatic activities, suggesting a generality of the destructive pathways. Taken together, these findings provided a number of novel targets for neuroprotection and as such opened up new perspectives for the therapy of hereditary neurodegeneration in the retina and possibly other parts of the central nervous system.
  •  
9.
  • Jiao, K, et al. (författare)
  • Efficacy of PARP inhibition in Pde6a mutant mouse models for retinitis pigmentosa depends on the quality and composition of individual human mutations
  • 2016
  • Ingår i: Cell death discovery. - : Springer Science and Business Media LLC. - 2058-7716. ; 2
  • Tidskriftsartikel (refereegranskat)abstract
    • Retinitis pigmentosa (RP), an inherited blinding disease, is caused by a variety of different mutations that affect retinal photoreceptor function and survival. So far there is neither effective treatment nor cure. We have previously shown that poly(ADP-ribose)polymerase (PARP) acts as a common and critical denominator of cell death in photoreceptors, qualifying it as a potential target for future therapeutic intervention. A significant fraction of RP-causing mutations affect the genes for the rod photoreceptor phosphodiesterase 6A (PDE6A) subunit, but it is not known whether they all engage the same death pathway. Analysing three homozygous point mutations (Pde6a R562W, D670G, and V685M) and one compound heterozygous Pde6a (V685M/R562W) mutation in mouse models that match human RP patients, we demonstrate excessive activation of PARP, which correlated in time with the progression of photoreceptor degeneration. The causal involvement of PARP activity in the neurodegenerative process was confirmed in organotypic retinal explant cultures treated with the PARP-selective inhibitor PJ34, using different treatment time-points and durations. Remarkably, the neuroprotective efficacy of PARP inhibition correlated inversely with the strength of the genetically induced insult, with the D670G mutant showing the best treatment effects. Our results highlight PARP as a target for neuroprotective interventions in RP caused by PDE6A mutations and are a first attempt towards personalized, genotype-matched therapy development for RP. In addition, for each of the different mutant situations, our work identifies windows of opportunity for an optimal treatment regimen for further in vivo experimentation and possibly clinical studies.
  •  
10.
  • Kuehlewein, Laura, et al. (författare)
  • Clinical phenotype and course of PDE6A-associated retinitis pigmentosa disease, characterized in preparation for a gene supplementation trial
  • 2020
  • Ingår i: JAMA Ophthalmology. - : American Medical Association (AMA). - 2168-6165. ; 138:12, s. 1241-1250
  • Tidskriftsartikel (refereegranskat)abstract
    • IMPORTANCE Treatment trials require sound knowledge on the natural course of disease. OBJECTIVE To assess clinical features, genetic findings, and genotype-phenotype correlations in patients with retinitis pigmentosa (RP) associated with biallelic sequence variations in the PDE6A gene in preparation for a gene supplementation trial. DESIGN, SETTING, AND PARTICIPANTS This prospective, longitudinal, observational cohort study was conducted from January 2001 to December 2019 in a single center (Centre for Ophthalmology of the University of Tübingen, Germany) with patients recruited multinationally from 12 collaborating European tertiary referral centers. Patients with retinitis pigmentosa, sequence variants in PDE6A, and the ability to provide informed consent were included. EXPOSURES Comprehensive ophthalmological examinations; validation of compound heterozygosity and biallelism by familial segregation analysis, allelic cloning, or assessment of next-generation sequencing-read data, where possible. MAIN OUTCOMES AND MEASURES Genetic findings and clinical features describing the entire cohort and comparing patients harboring the 2 most common disease-causing variants in a homozygous state (c.304C>A;p.(R102S) and c.998 + 1G>A;p.?). RESULTS Fifty-seven patients (32 female patients [56%]; mean [SD], 40 [14] years) from 44 families were included. All patients completed the study. Thirty patients were homozygous for disease-causing alleles. Twenty-seven patients were heterozygous for 2 different PDE6A variants each. The most frequently observed alleles were c.304C>A;p.(R102S), c.998 + 1G>A;p.?, and c.2053G>A;p.(V685M). The mean (SD) best-corrected visual acuity was 0.43 (0.48) logMAR (Snellen equivalent, 20/50). The median visual field area with object III4e was 660 square degrees (5th and 95th percentiles, 76 and 11 019 square degrees; 25th and 75th percentiles, 255 and 3923 square degrees). Dark-adapted and light-adapted full-field electroretinography showed no responses in 88 of 108 eyes (81.5%). Sixty-nine of 108 eyes (62.9%) showed additional findings on optical coherence tomography imaging (eg, cystoid macular edema or macular atrophy). The variant c.998 + 1G>A;p.? led to a more severe phenotype when compared with the variant c.304C>A;p.(R102S). CONCLUSIONS AND RELEVANCE Seventeen of the PDE6A variants found in these patients appeared to be novel. Regarding the clinical findings, disease was highly symmetrical between the right and left eyes and visual impairment was mild or moderate in 90% of patients, providing a window of opportunity for gene therapy.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy