SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Paquette I) "

Sökning: WFRF:(Paquette I)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Glasbey, JC, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
5.
  •  
6.
  • Dornelas, M., et al. (författare)
  • BioTIME: A database of biodiversity time series for the Anthropocene
  • 2018
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 27:7, s. 760-786
  • Tidskriftsartikel (refereegranskat)abstract
    • Motivation: The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community-led open-source database of biodiversity time series. Our goal is to accelerate and facilitate quantitative analysis of temporal patterns of biodiversity in the Anthropocene. Main types of variables included: The database contains 8,777,413 species abundance records, from assemblages consistently sampled for a minimum of 2 years, which need not necessarily be consecutive. In addition, the database contains metadata relating to sampling methodology and contextual information about each record. Spatial location and grain: BioTIME is a global database of 547,161 unique sampling locations spanning the marine, freshwater and terrestrial realms. Grain size varies across datasets from 0.0000000158 km(2) (158 cm(2)) to 100 km(2) (1,000,000,000,000 cm(2)). Time period and grainBio: TIME records span from 1874 to 2016. The minimal temporal grain across all datasets in BioTIME is a year. Major taxa and level of measurement: BioTIME includes data from 44,440 species across the plant and animal kingdoms, ranging from plants, plankton and terrestrial invertebrates to small and large vertebrates.
  •  
7.
  • Ramilowski, JA, et al. (författare)
  • Functional annotation of human long noncoding RNAs via molecular phenotyping
  • 2020
  • Ingår i: Genome research. - : Cold Spring Harbor Laboratory. - 1549-5469 .- 1088-9051. ; 30:7, s. 1060-1072
  • Tidskriftsartikel (refereegranskat)abstract
    • Long noncoding RNAs (lncRNAs) constitute the majority of transcripts in the mammalian genomes, and yet, their functions remain largely unknown. As part of the FANTOM6 project, we systematically knocked down the expression of 285 lncRNAs in human dermal fibroblasts and quantified cellular growth, morphological changes, and transcriptomic responses using Capped Analysis of Gene Expression (CAGE). Antisense oligonucleotides targeting the same lncRNAs exhibited global concordance, and the molecular phenotype, measured by CAGE, recapitulated the observed cellular phenotypes while providing additional insights on the affected genes and pathways. Here, we disseminate the largest-to-date lncRNA knockdown data set with molecular phenotyping (over 1000 CAGE deep-sequencing libraries) for further exploration and highlight functional roles for ZNF213-AS1 and lnc-KHDC3L-2.
  •  
8.
  • Mustjoki, S., et al. (författare)
  • Clonal expansion of T/NK-cells during tyrosine kinase inhibitor dasatinib therapy
  • 2009
  • Ingår i: Leukemia. - : Springer Science and Business Media LLC. - 1476-5551 .- 0887-6924. ; 23:8, s. 1398-1405
  • Tidskriftsartikel (refereegranskat)abstract
    • Dasatinib, a broad-spectrum tyrosine kinase inhibitor (TKI), predominantly targets BCR-ABL and SRC oncoproteins and also inhibits off-target kinases, which may result in unexpected drug responses. We identified 22 patients with marked lymphoproliferation in blood while on dasatinib therapy. Clonality and immunophenotype were analyzed and related clinical information was collected. An abrupt lymphocytosis (peak count range 4-20 x 10(9)/l) with large granular lymphocyte (LGL) morphology was observed after a median of 3 months from the start of therapy and it persisted throughout the therapy. Fifteen patients had a cytotoxic T-cell and seven patients had an NK-cell phenotype. All T-cell expansions were clonal. Adverse effects, such as colitis and pleuritis, were common (18 of 22 patients) and were preceded by LGL lymphocytosis. Accumulation of identical cytotoxic T cells was also detected in pleural effusion and colon biopsy samples. Responses to dasatinib were good and included complete, unexpectedly long-lasting remissions in patients with advanced leukemia. In a phase II clinical study on 46 Philadelphia chromosome-positive acute lymphoblastic leukemia, patients with lymphocytosis had superior survival compared with patients without lymphocytosis. By inhibiting immunoregulatory kinases, dasatinib may induce a reversible state of aberrant immune reactivity associated with good clinical responses and a distinct adverse effect profile. Leukemia (2009) 23, 1398-1405; doi:10.1038/leu.2009.46; published online 19 March 2009
  •  
9.
  • O'Connor, M. I., et al. (författare)
  • A general biodiversity-function relationship is mediated by trophic level
  • 2017
  • Ingår i: Oikos. - : Wiley. - 0030-1299. ; 126:1, s. 18-31
  • Tidskriftsartikel (refereegranskat)abstract
    • Species diversity affects the functioning of ecosystems, including the efficiency by which communities capture limited resources, produce biomass, recycle and retain biologically essential nutrients. These ecological functions ultimately support the ecosystem services upon which humanity depends. Despite hundreds of experimental tests of the effect of biodiversity on ecosystem function (BEF), it remains unclear whether diversity effects are sufficiently general that we can use a single relationship to quantitatively predict how changes in species richness alter an ecosystem function across trophic levels, ecosystems and ecological conditions. Our objective here is to determine whether a general relationship exists between biodiversity and standing biomass. We used hierarchical mixed effects models, based on a power function between species richness and biomass production (Y = a x S-b), and a database of 374 published experiments to estimate the BEF relationship (the change in biomass with the addition of species), and its associated uncertainty, in the context of environmental factors. We found that the mean relationship (b = 0.26, 95% CI: 0.16, 0.37) characterized the vast majority of observations, was robust to differences in experimental design, and was independent of the range of species richness levels considered. However, the richness-biomass relationship varied by trophic level and among ecosystems; in aquatic systems b was nearly twice as large for consumers (herbivores and detritivores) compared to primary producers; in terrestrial ecosystems, b for detritivores was negative but depended on few studies. We estimated changes in biomass expected for a range of changes in species richness, highlighting that species loss has greater implications than species gains, skewing a distribution of biomass change relative to observed species richness change. When biomass provides a good proxy for processes that underpin ecosystem services, this relationship could be used as a step in modeling the production of ecosystem services and their dependence on biodiversity.
  •  
10.
  • Ratcliffe, S., et al. (författare)
  • Biodiversity and ecosystem functioning relations in European forests depend on environmental context
  • 2017
  • Ingår i: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 20:11, s. 1414-1426
  • Tidskriftsartikel (refereegranskat)abstract
    • The importance of biodiversity in supporting ecosystem functioning is generally well accepted. However, most evidence comes from small-scale studies, and scaling-up patterns of biodiversity-ecosystem functioning (B-EF) remains challenging, in part because the importance of environmental factors in shaping B-EF relations is poorly understood. Using a forest research platform in which 26 ecosystem functions were measured along gradients of tree species richness in six regions across Europe, we investigated the extent and the potential drivers of context dependency of B-EF relations. Despite considerable variation in species richness effects across the continent, we found a tendency for stronger B-EF relations in drier climates as well as in areas with longer growing seasons and more functionally diverse tree species. The importance of water availability in driving context dependency suggests that as water limitation increases under climate change, biodiversity may become even more important to support high levels of functioning in European forests.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy