SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Paragi Z.) "

Sökning: WFRF:(Paragi Z.)

  • Resultat 1-10 av 43
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Amiri, M., et al. (författare)
  • Periodic activity from a fast radio burst source
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 582:7812, s. 351-355
  • Tidskriftsartikel (refereegranskat)abstract
    • Fast radio bursts (FRBs) are bright, millisecond-duration radio transients originating from sources at extragalactic distances1, the origin of which is unknown. Some FRB sources emit repeat bursts, ruling out cataclysmic origins for those events2–4. Despite searches for periodicity in repeat burst arrival times on timescales from milliseconds to many days2,5–7, these bursts have hitherto been observed to appear sporadically and—although clustered8—without a regular pattern. Here we report observations of a 16.35 ± 0.15 day periodicity (or possibly a higher-frequency alias of that periodicity) from the repeating FRB 180916.J0158+65 detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst Project4,9. In 38 bursts recorded from 16 September 2018 to 4 February 2020 utc, we find that all bursts arrive in a five-day phase window, and 50 per cent of the bursts arrive in a 0.6-day phase window. Our results suggest a mechanism for periodic modulation either of the burst emission itself or through external amplification or absorption, and disfavour models invoking purely sporadic processes.
  •  
2.
  • Marcote, B., et al. (författare)
  • A repeating fast radio burst source localized to a nearby spiral galaxy
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 577:7789, s. 190-194
  • Tidskriftsartikel (refereegranskat)abstract
    • Fast radio bursts (FRBs) are brief, bright, extragalactic radio flashes1,2. Their physical origin remains unknown, but dozens of possible models have been postulated3. Some FRB sources exhibit repeat bursts4–7. Although over a hundred FRB sources have been discovered8, only four have been localized and associated with a host galaxy9–12, and just one of these four is known to emit repeating FRBs9. The properties of the host galaxies, and the local environments of FRBs, could provide important clues about their physical origins. The first known repeating FRB, however, was localized to a low-metallicity, irregular dwarf galaxy, and the apparently non-repeating sources were localized to higher-metallicity, massive elliptical or star-forming galaxies, suggesting that perhaps the repeating and apparently non-repeating sources could have distinct physical origins. Here we report the precise localization of a second repeating FRB source6, FRB 180916.J0158+65, to a star-forming region in a nearby (redshift 0.0337 ± 0.0002) massive spiral galaxy, whose properties and proximity distinguish it from all known hosts. The lack of both a comparably luminous persistent radio counterpart and a high Faraday rotation measure6 further distinguish the local environment of FRB 180916.J0158+65 from that of the single previously localized repeating FRB source, FRB 121102. This suggests that repeating FRBs may have a wide range of luminosities, and originate from diverse host galaxies and local environments.
  •  
3.
  • Pleunis, Z., et al. (författare)
  • LOFAR Detection of 110-188MHz emission and frequency-dependent activity from FRB20180916B
  • 2021
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 911:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The object FRB 20180916B is a well-studied repeating fast radio burst source. Its proximity (∼150 Mpc), along with detailed studies of the bursts, has revealed many clues about its nature, including a 16.3 day periodicity in its activity. Here we report on the detection of 18 bursts using LOFAR at 110-188 MHz, by far the lowest-frequency detections of any FRB to date. Some bursts are seen down to the lowest observed frequency of 110 MHz, suggesting that their spectra extend even lower. These observations provide an order-of-magnitude stronger constraint on the optical depth due to freëCfree absorption in the source's local environment. The absence of circular polarization and nearly flat polarization angle curves are consistent with burst properties seen at 300-1700 MHz. Compared with higher frequencies, the larger burst widths (∼40-160 ms at 150 MHz) and lower linear polarization fractions are likely due to scattering. We find ∼2-3 rad m variations in the Faraday rotation measure that may be correlated with the activity cycle of the source. We compare the LOFAR burst arrival times to those of 38 previously published and 22 newly detected bursts from the uGMRT (200-450 MHz) and CHIME/FRB (400-800 MHz). Simultaneous observations show five CHIME/FRB bursts when no emission is detected by LOFAR. We find that the burst activity is systematically delayed toward lower frequencies by about 3 days from 600 to 150 MHz. We discuss these results in the context of a model in which FRB 20180916B is an interacting binary system featuring a neutron star and high-mass stellar companion.
  •  
4.
  • Agudo, I., et al. (författare)
  • Panning for gold, but finding helium: Discovery of the ultra-stripped supernova SN 2019wxt from gravitational-wave follow-up observations
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 675
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results from multi-wavelength observations of a transient discovered during an intensive follow-up campaign of S191213g, a gravitational wave (GW) event reported by the LIGO-Virgo Collaboration as a possible binary neutron star merger in a low latency search. This search yielded SN 2019wxt, a young transient in a galaxy whose sky position (in the 80% GW contour) and distance (∼150 Mpc) were plausibly compatible with the localisation uncertainty of the GW event. Initially, the transienta's tightly constrained age, its relatively faint peak magnitude (Mi ∼ -16.7 mag), and the r-band decline rate of ∼1 mag per 5 days appeared suggestive of a compact binary merger. However, SN 2019wxt spectroscopically resembled a type Ib supernova, and analysis of the optical-near-infrared evolution rapidly led to the conclusion that while it could not be associated with S191213g, it nevertheless represented an extreme outcome of stellar evolution. By modelling the light curve, we estimated an ejecta mass of only ∼0.1 M·, with 56Ni comprising ∼20% of this. We were broadly able to reproduce its spectral evolution with a composition dominated by helium and oxygen, with trace amounts of calcium. We considered various progenitor channels that could give rise to the observed properties of SN 2019wxt and concluded that an ultra-stripped origin in a binary system is the most likely explanation. Disentangling genuine electromagnetic counterparts to GW events from transients such as SN 2019wxt soon after discovery is challenging: in a bid to characterise this level of contamination, we estimated the rate of events with a volumetric rate density comparable to that of SN 2019wxt and found that around one such event per week can occur within the typical GW localisation area of O4 alerts out to a luminosity distance of 500 Mpc, beyond which it would become fainter than the typical depth of current electromagnetic follow-up campaigns.
  •  
5.
  • Kirsten, Franz, 1983, et al. (författare)
  • A repeating fast radio burst source in a globular cluster
  • 2022
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 602:7898, s. 585-589
  • Tidskriftsartikel (refereegranskat)abstract
    • Fast radio bursts (FRBs) are flashes of unknown physical origin1. The majority of FRBs have been seen only once, although some are known to generate multiple flashes2,3. Many models invoke magnetically powered neutron stars (magnetars) as the source of the emission4,5. Recently, the discovery6 of another repeater (FRB 20200120E) was announced, in the direction of the nearby galaxy M81, with four potential counterparts at other wavelengths6. Here we report observations that localized the FRB to a globular cluster associated with M81, where it is 2 parsecs away from the optical centre of the cluster. Globular clusters host old stellar populations, challenging FRB models that invoke young magnetars formed in a core-collapse supernova. We propose instead that FRB 20200120E originates from a highly magnetized neutron star formed either through the accretion-induced collapse of a white dwarf, or the merger of compact stars in a binary system7. Compact binaries are efficiently formed inside globular clusters, so a model invoking them could also be responsible for the observed bursts.
  •  
6.
  • Nimmo, K., et al. (författare)
  • Highly polarized microstructure from the repeating FRB 20180916B
  • 2021
  • Ingår i: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 5:6, s. 594-603
  • Tidskriftsartikel (refereegranskat)abstract
    • Fast radio bursts (FRBs) are bright, coherent, short-duration radio transients of as-yet unknown extragalactic origin. FRBs exhibit a variety of spectral, temporal and polarimetric properties that can unveil clues into their emission physics and propagation effects in the local medium. Here, we present the high-time-resolution (down to 1 mu s) polarimetric properties of four 1.7 GHz bursts from the repeating FRB 20180916B, which were detected in voltage data during observations with the European Very Long Baseline Interferometry Network. We observe a range of emission timescales that spans three orders of magnitude, with the shortest component width reaching 3-4 mu s (below which we are limited by scattering). We demonstrate that all four bursts are highly linearly polarized (greater than or similar to 80%), show no evidence of significant circular polarization (less than or similar to 15%), and exhibit a constant polarization position angle (PPA) during and between bursts. On short timescales (less than or similar to 100 mu s), however, there appear to be subtle PPA variations (of a few degrees) across the burst profiles. These observational results are most naturally explained in an FRB model in which the emission is magnetospheric in origin, in contrast to models in which the emission originates at larger distances in a relativistic shock. High-time-resolution observations of the repeating fast radio burst source FRB 20180916B reveal changes to the polarization properties of the emission on timescales of a few microseconds, indicating an origin in the source magnetosphere.
  •  
7.
  • Yang, Jun, 1979, et al. (författare)
  • A radio structure resolved at the deca-parsec scale in the radio-quiet quasar PDS 456 with an extremely powerful X-ray outflow
  • 2019
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 482:2, s. 1701-1705
  • Tidskriftsartikel (refereegranskat)abstract
    • Active galactic nuclei (AGNs) accreting at rates close to the Eddington limit can host radiatively driven mildly relativistic outflows. Some of these X-ray absorbing but powerful outflows can produce strong shocks, resulting in a significant non-thermal emission. This outflow-driven radio emission might be detectable in the radio-quiet quasar PDS 456, as it has a bolometric luminosity that reaches the Eddington limit and a relativistic wide-aperture X-ray outflow with a kinetic power high enough to quench the star formation in its host galaxy. To investigate this possibility, we performed very-long-baseline interferometric (VLBI) observations of the quasar with the European VLBI Network (EVN) at 5 GHz. The full-resolution EVN image reveals two faint and diffuse radio components with a projected separation of about 20 pc and an average brightness temperature of around two million Kelvin. In relation to the optical submas-accuracy position measured by the Gaia mission, the two components are very likely on opposite sides of an undetected radio core. Thus, the VLBI structure at the deca-pc scale could be either a young jet or a bidirectional radio-emitting outflow, launched in the vicinity of a strongly accreting central engine. Two diffuse components at the hecto-pc scale, likely the relic radio emission from past AGN activity, are tentatively detected on each side in the low-resolution EVN image.
  •  
8.
  • Abdo, A. A., et al. (författare)
  • Multiwavelength Monitoring of the Enigmatic Narrow-Line Seyfert 1 PMN J0948+0022 in 2009 March-July
  • 2009
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 707:1, s. 727-737
  • Tidskriftsartikel (refereegranskat)abstract
    • Following the recent discovery of γ rays from the radio-loud narrow-line Seyfert 1 galaxy PMN J0948+0022 (z = 0.5846), we started a multiwavelength campaign from radio to γ rays, which was carried out between the end of 2009 March and the beginning of July. The source displayed activity at all the observed wavelengths: a general decreasing trend from optical to γ-ray frequencies was followed by an increase of radio emission after less than two months from the peak of the γ-ray emission. The largest flux change, about a factor of about 4, occurred in the X-ray band. The smallest was at ultraviolet and near-infrared frequencies, where the rate of the detected photons dropped by a factor 1.6-1.9. At optical wavelengths, where the sampling rate was the highest, it was possible to observe day scale variability, with flux variations up to a factor of about 3. The behavior of PMN J0948+0022 observed in this campaign and the calculated power carried out by its jet in the form of protons, electrons, radiation, and magnetic field are quite similar to that of blazars, specifically of flat-spectrum radio quasars. These results confirm the idea that radio-loud narrow-line Seyfert 1 galaxies host relativistic jets with power similar to that of average blazars.
  •  
9.
  • An, T., et al. (författare)
  • Evolving parsec-scale radio structure in the most distant blazar known
  • 2020
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723 .- 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Blazars are a sub-class of quasars with Doppler boosted jets oriented close to the line of sight, and thus efficient probes of supermassive black hole growth and their environment, especially at high redshifts. Here we report on Very Long Baseline Interferometry observations of a blazar J0906 + 6930 at z = 5.47, which enabled the detection of polarised emission and measurement of jet proper motion at parsec scales. The observations suggest a less powerful jet compared with the general blazar population, including lower proper motion and bulk Lorentz factor. This coupled with a previously inferred high accretion rate indicate a transition from an accretion radiative power to a jet mechanical power based transfer of energy and momentum to the surrounding gas. While alternative scenarios could not be fully ruled out, our results indicate a possibly nascent jet embedded in and interacting with a dense medium resulting in a jet bending.
  •  
10.
  • Cao, H.M., et al. (författare)
  • VLBI observations of four radio quasars at z > 4: blazars or not?
  • 2017
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 467:1, s. 950-960
  • Tidskriftsartikel (refereegranskat)abstract
    • Blazars are active galactic nuclei (AGN) whose relativistic jets point nearly to the line of sight. Their compact radio structure can be imaged with very long baseline interferometry (VLBI) on parsec scales. Blazars at extremely high redshifts provide a unique insight into the AGN phenomena in the early Universe. We observed four radio sources at redshift z > 4 with the European VLBI Network (EVN) at 1.7 and 5 GHz. These objects were previously classified as blazar candidates based on X-ray observations. One of them, J2134–0419 is firmly confirmed as a blazar with our VLBI observations, due to its relativistically beamed radio emission. Its radio jet extended to ∼10 milli-arcsec scale makes this source a promising target for follow-up VLBI observations to reveal any apparent proper motion. Another target, J0839+5112 shows a compact radio structure typical of quasars. There is evidence for flux density variability and its radio “core” has a flat spectrum. However, the EVN data suggest that its emission is not Doppler-boosted. The remaining two blazar candidates (J1420+1205 and J2220+0025) show radio properties totally unexpected from radio AGN with small-inclination jet. Their emission extends to arcsec scales and the Doppler factors of the central components are well below 1. Their structures resemble that of double-lobed radio AGN with large inclination to the line of sight. This is in contrast with the blazar-type modeling of their multi-band spectral energy distributions. Our work underlines the importance of high-resolution VLBI imaging in confirming the blazar nature of high-redshift radio sources.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 43

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy