SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Parikka Mataleena) "

Sökning: WFRF:(Parikka Mataleena)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aspatwar, Ashok, et al. (författare)
  • Abnormal cerebellar development and ataxia in CARP VIII morphant zebrafish
  • 2013
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 22:3, s. 417-432
  • Tidskriftsartikel (refereegranskat)abstract
    • Congenital ataxia and mental retardation are mainly caused by variations in the genes that affect brain development. Recent reports have shown that mutations in the CA8 gene are associated with mental retardation and ataxia in humans and ataxia in mice. The gene product, carbonic anhydrase-related protein VIII (CARP VIII), is predominantly present in cerebellar Purkinje cells, where it interacts with the inositol 1,4,5-trisphosphate receptor type 1, a calcium channel. In this study, we investigated the effects of the loss of function of CARP VIII during embryonic development in zebrafish using antisense morpholino oligonucleotides against the CA8 gene. Knockdown of CA8 in zebrafish larvae resulted in a curved body axis, pericardial edema and abnormal movement patterns. Histologic examination revealed gross morphologic defects in the cerebellar region and in the muscle. Electron microscopy studies showed increased neuronal cell death in developing larvae injected with CA8 antisense morpholinos. These data suggest a pivotal role for CARP VIII during embryonic development. Furthermore, suppression of CA8 expression leads to defects in motor and coordination functions, mimicking the ataxic human phenotype. This work reveals an evolutionarily conserved function of CARP VIII in brain development and introduces a novel zebrafish model in which to investigate the mechanisms of CARP VIII-related ataxia and mental retardation in humans.
  •  
2.
  • Laukkanen, Saara, et al. (författare)
  • SIX6 is a TAL1-regulated transcription factor in T-ALL and associated with inferior outcome
  • 2020
  • Ingår i: Leukemia and Lymphoma. - : Taylor & Francis. - 1042-8194 .- 1029-2403. ; 61:13, s. 3089-3100
  • Tidskriftsartikel (refereegranskat)abstract
    • T-cell acute lymphoblastic leukemia (T-ALL) is a hematological malignancy driven by abnormal activity of transcription factors. Here we report an aberrant expression of the developmental transcription factor SIX6 in the TAL1-subtype of T-ALL. Our results demonstrate that the binding of TAL1 and GATA3 transcription factors into an upstream enhancer element directly regulates SIX6 expression. High expression of SIX6 was associated with inferior event-free survival within three independent patient cohorts. At a functional level, CRISPR-Cas9-mediated knockout of the SIX6 gene in TAL1 positive Jurkat cells induced changes in genes associated with the mTOR-, K-RAS-, and TNFα-related molecular signatures but did not impair cell proliferation or viability. There was also no acceleration of T-ALL development within a Myc driven zebrafish tumor model in vivo. Taken together, our results show that SIX6 belongs to the TAL1 regulatory gene network in T-ALL but is alone insufficient to influence the development or maintenance of T-ALL.
  •  
3.
  • Nishibori, Yukino, et al. (författare)
  • Glcci1 Deficiency Leads to Proteinuria
  • 2011
  • Ingår i: Journal of the American Society of Nephrology. - 1046-6673 .- 1533-3450. ; 22:11, s. 2037-2046
  • Tidskriftsartikel (refereegranskat)abstract
    • Unbiased transcriptome profiling and functional genomics approaches identified glucocorticoid-induced transcript 1 (GLCCI1) as being a transcript highly specific for the glomerulus, but its role in glomerular development and disease is unknown. Here, we report that mouse glomeruli express far greater amounts of Glcci1 protein compared with the rest of the kidney. RT-PCR and Western blotting demonstrated that mouse glomerular Glcci1 is approximately 60 kD and localizes to the cytoplasm of podocytes in mature glomeruli. In the fetal kidney, intense Glcci1 expression occurs at the capillary-loop stage of glomerular development. Using gene knockdown in zebrafish with morpholinos, morphants lacking Glcci1 function had collapsed glomeruli with foot-process effacement. Permeability studies of the glomerular filtration barrier in these zebrafish morphants demonstrated a disruption of the selective glomerular permeability filter. Taken together, these data suggest that Glcci1 promotes the normal development and maintenance of podocyte structure and function.
  •  
4.
  • Ulvila, Johanna, et al. (författare)
  • Cofilin regulator 14-3-3zeta is an evolutionarily conserved protein required for phagocytosis and microbial resistance
  • 2011
  • Ingår i: Journal of Leukocyte Biology. - : Society for Leukocyte Biology. - 0741-5400 .- 1938-3673. ; 89:5, s. 649-659
  • Tidskriftsartikel (refereegranskat)abstract
    • Phagocytosis is an ancient cellular process that plays an important role in host defense. In Drosophila melanogaster phagocytic, macrophage-like hemocytes recognize and ingest microbes. We performed an RNAi-based in vitro screen in the Drosophila hemocyte cell line S2 and identified Abi, cpa, cofilin regulator 14-3-3ζ, tlk, CG2765, and CG15609 as mediators of bacterial phagocytosis. Of these identified genes, 14-3-3ζ had an evolutionarily conserved role in phagocytosis: bacterial phagocytosis was compromised when 14-3-3ζ was targeted with RNAi in primary Drosophila hemocytes and when the orthologous genes Ywhab and Ywhaz were silenced in zebrafish and mouse RAW 264.7 cells, respectively. In Drosophila and zebrafish infection models, 14-3-3ζ was required for resistance against Staphylococcus aureus. We conclude that 14-3-3ζ is essential for phagocytosis and microbial resistance in insects and vertebrates.
  •  
5.
  • Valanne, Susanna, et al. (författare)
  • Genome-Wide RNA Interference in Drosophila Cells Identifies G Protein-Coupled Receptor Kinase 2 as a Conserved Regulator of NF-kappa B Signaling
  • 2010
  • Ingår i: Journal of Immunology. - : The American Association of Immunologists. - 0022-1767 .- 1550-6606. ; 184:11, s. 6188-6198
  • Tidskriftsartikel (refereegranskat)abstract
    • Because NF-kappa B signaling pathways are highly conserved in evolution, the fruit fly Drosophila melanogaster provides a good model to study these cascades. We carried out an RNA interference (RNAi)-based genome-wide in vitro reporter assay screen in Drosophila for components of NF-kappa B pathways. We analyzed 16,025 dsRNA-treatments and identified 10 novel NF-kappa B regulators. Of these, nine dsRNA-treatments affect primarily the Toll pathway. G protein-coupled receptor kinase (Gprk) 2, CG15737/Toll pathway activation mediating protein, and u-shaped were required for normal Drosomycin response in vivo. Interaction studies revealed that Gprk2 interacts with the Drosophila I kappa B homolog Cactus, but is not required in Cactus degradation, indicating a novel mechanism for NF-kappa B regulation. Morpholino silencing of the zebrafish ortholog of Gprk2 in fish embryos caused impaired cytokine expression after Escherichia coli infection, indicating a conserved role in NF-kappa B signaling. Moreover, small interfering RNA silencing of the human ortholog GRK5 in HeLa cells impaired NF-kappa B reporter activity. Gprk2 RNAi flies are susceptible to infection with Enterococcus faecalis and Gprk2 RNAi rescues Toll(10b)-induced blood cell activation in Drosophila larvae in vivo. We conclude that Gprk2/GRK5 has an evolutionarily conserved role in regulating NF-kappa B signaling. The Journal of Immunology, 2010, 184: 6188-6198.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy