SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Parish Clare L) "

Sökning: WFRF:(Parish Clare L)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bye, Chris R, et al. (författare)
  • Transcriptome analysis reveals transmembrane targets on transplantable midbrain dopamine progenitors.
  • 2015
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 112:15, s. 1946-1955
  • Tidskriftsartikel (refereegranskat)abstract
    • An important challenge for the continued development of cell therapy for Parkinson's disease (PD) is the establishment of procedures that better standardize cell preparations for use in transplantation. Although cell sorting has been an anticipated strategy, its application has been limited by lack of knowledge regarding transmembrane proteins that can be used to target and isolate progenitors for midbrain dopamine (mDA) neurons. We used a "FACS-array" approach to identify 18 genes for transmembrane proteins with high expression in mDA progenitors and describe the utility of four of these targets (Alcam, Chl1, Gfra1, and Igsf8) for isolating mDA progenitors from rat primary ventral mesencephalon through flow cytometry. Alcam and Chl1 facilitated a significant enrichment of mDA neurons following transplantation, while targeting of Gfra1 allowed for robust separation of dopamine and serotonin neurons. Importantly, we also show that mDA progenitors isolated on the basis of transmembrane proteins are capable of extensive, functional innervation of the host striatum and correction of motor impairment in a unilateral model of PD. These results are highly relevant for current efforts to establish safe and effective stem cell-based procedures for PD, where clinical translation will almost certainly require safety and standardization measures in order to deliver well-characterized cell preparations.
  •  
2.
  • Gantner, Carlos W., et al. (författare)
  • Viral Delivery of GDNF Promotes Functional Integration of Human Stem Cell Grafts in Parkinson's Disease
  • 2020
  • Ingår i: Cell Stem Cell. - : Elsevier BV. - 1934-5909. ; 26:4, s. 5-526
  • Tidskriftsartikel (refereegranskat)abstract
    • Dopaminergic neurons (DAns), generated from human pluripotent stem cells (hPSCs), are capable of functionally integrating following transplantation and have recently advanced to clinical trials for Parkinson's disease (PD). However, pre-clinical studies have highlighted the low proportion of DAns within hPSC-derived grafts and their inferior plasticity compared to fetal tissue. Here, we examined whether delivery of a developmentally critical protein, glial cell line-derived neurotrophic factor (GDNF), could improve graft outcomes. We tracked the response of DAns implanted into either a GDNF-rich environment or after a delay in exposure. Early GDNF promoted survival and plasticity of non-DAns, leading to enhanced motor recovery in PD rats. Delayed exposure to GDNF promoted functional recovery through increases in DAn specification, DAn plasticity, and DA metabolism. Transcriptional profiling revealed a role for mitogen-activated protein kinase (MAPK)-signaling downstream of GDNF. Collectively, these results demonstrate the potential of neurotrophic gene therapy strategies to improve hPSC graft outcomes.
  •  
3.
  • Moriarty, Niamh, et al. (författare)
  • A combined cell and gene therapy approach for homotopic reconstruction of midbrain dopamine pathways using human pluripotent stem cells
  • 2022
  • Ingår i: Cell Stem Cell. - : Elsevier BV. - 1934-5909. ; 29:3, s. 5-448
  • Tidskriftsartikel (refereegranskat)abstract
    • Midbrain dopamine (mDA) neurons can be replaced in patients with Parkinson's disease (PD) in order to provide long-term improvement in motor functions. The limited capacity for long-distance axonal growth in the adult brain means that cells are transplanted ectopically, into the striatal target. As a consequence, several mDA pathways are not re-instated, which may underlie the incomplete restoration of motor function in patients. Here, we show that viral delivery of GDNF to the striatum, in conjunction with homotopic transplantation of human pluripotent stem-cell-derived mDA neurons, recapitulates brain-wide mDA target innervation. The grafts provided re-instatement of striatal dopamine levels and correction of motor function and also connectivity with additional mDA target nuclei not well innervated by ectopic grafts. These results demonstrate the remarkable capacity for achieving functional and anatomically precise reconstruction of long-distance circuitry in the adult brain by matching appropriate growth-factor signaling to grafting of specific cell types.
  •  
4.
  • Ribeiro, Diogo, et al. (författare)
  • Efficient expansion and dopaminergic differentiation of human fetal ventral midbrain neural stem cells by midbrain morphogens
  • 2013
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961 .- 1095-953X. ; 49, s. 118-127
  • Tidskriftsartikel (refereegranskat)abstract
    • Human fetal midbrain tissue grafting has provided proof-of-concept for dopamine cell replacement therapy (CRT) in Parkinson's disease (PD). However, limited tissue availability has hindered the development and widespread use of this experimental therapy. Here we present a method for generating large numbers of midbrain dopaminergic (DA) neurons based on expanding and differentiating neural stem/progenitor cells present in the human ventral midbrain (hVM) tissue. Our results show that hVM neurospheres (hVMN) with low cell numbers, unlike their rodent counterparts, expand the total number of cells 3-fold, whilst retaining their capacity to differentiate into midbrain DA neurons. Moreover, Wnt5a promoted DA differentiation of expanded cells resulting in improved morphological maturation, midbrain DA marker expression, DA release and electrophysiological properties. This method results in cell preparations that, after expansion and differentiation, can contain 6-fold more midbrain DA neurons than the starting VM preparation. Thus, our results provide evidence that by improving expansion and differentiation of progenitors present in the hVM it is possible to greatly enrich cell preparations for DA neurons. This method could substantially reduce the amount of human fetal midbrain tissue necessary for CRT in patients with PD, which could have major implications for the widespread adoption of this approach. (C) 2012 Elsevier Inc. All rights reserved.
  •  
5.
  • Tønnesen, Jan, et al. (författare)
  • Functional integration of grafted neural stem cell-derived dopaminergic neurons monitored by optogenetics in an in vitro Parkinson model.
  • 2011
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 6:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Intrastriatal grafts of stem cell-derived dopamine (DA) neurons induce behavioral recovery in animal models of Parkinson's disease (PD), but how they functionally integrate in host neural circuitries is poorly understood. Here, Wnt5a-overexpressing neural stem cells derived from embryonic ventral mesencephalon of tyrosine hydroxylase-GFP transgenic mice were expanded as neurospheres and transplanted into organotypic cultures of wild type mouse striatum. Differentiated GFP-labeled DA neurons in the grafts exhibited mature neuronal properties, including spontaneous firing of action potentials, presence of post-synaptic currents, and functional expression of DA D(2) autoreceptors. These properties resembled those recorded from identical cells in acute slices of intrastriatal grafts in the 6-hydroxy-DA-induced mouse PD model and from DA neurons in intact substantia nigra. Optogenetic activation or inhibition of grafted cells and host neurons using channelrhodopsin-2 (ChR2) and halorhodopsin (NpHR), respectively, revealed complex, bi-directional synaptic interactions between grafted cells and host neurons and extensive synaptic connectivity within the graft. Our data demonstrate for the first time using optogenetics that ectopically grafted stem cell-derived DA neurons become functionally integrated in the DA-denervated striatum. Further optogenetic dissection of the synaptic wiring between grafted and host neurons will be crucial to clarify the cellular and synaptic mechanisms underlying behavioral recovery as well as adverse effects following stem cell-based DA cell replacement strategies in PD.
  •  
6.
  • Wali, Gautam, et al. (författare)
  • Generation of human-induced pluripotent-stem-cell-derived cortical neurons for high-throughput imaging of neurite morphology and neuron maturation
  • 2023
  • Ingår i: STAR Protocols. - 2666-1667. ; 4:2
  • Tidskriftsartikel (refereegranskat)abstract
    • High-throughput imaging allows in vitro assessment of neuron morphology for screening populations under developmental, homeostatic, and/or disease conditions. Here, we present a protocol to differentiate cryopreserved human cortical neuronal progenitors into mature cortical neurons for high-throughput imaging analysis. We describe the use of a notch signaling inhibitor to generate homogeneous neuronal populations at densities amenable to individual neurite identification. We detail neurite morphology assessment via measuring multiple parameters including neurite length, branches, roots, segments and extremities, and neuron maturation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy