SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Parkin S. S.P.) "

Sökning: WFRF:(Parkin S. S.P.)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Galeski, S., et al. (författare)
  • Origin of the quasi-quantized Hall effect in ZrTe 5
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723 .- 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The quantum Hall effect (QHE) is traditionally considered to be a purely two-dimensional (2D) phenomenon. Recently, however, a three-dimensional (3D) version of the QHE was reported in the Dirac semimetal ZrTe . It was proposed to arise from a magnetic-field-driven Fermi surface instability, transforming the original 3D electron system into a stack of 2D sheets. Here, we report thermodynamic, spectroscopic, thermoelectric and charge transport measurements on such ZrTe samples. The measured properties: magnetization, ultrasound propagation, scanning tunneling spectroscopy, and Raman spectroscopy, show no signatures of a Fermi surface instability, consistent with in-field single crystal X-ray diffraction. Instead, a direct comparison of the experimental data with linear response calculations based on an effective 3D Dirac Hamiltonian suggests that the quasi-quantization of the observed Hall response emerges from the interplay of the intrinsic properties of the ZrTe electronic structure and its Dirac-type semi-metallic character.
  •  
2.
  • Henighan, T., et al. (författare)
  • Generation mechanism of terahertz coherent acoustic phonons in Fe
  • 2016
  • Ingår i: PHYSICAL REVIEW B. - 2469-9950. ; 93:22
  • Tidskriftsartikel (refereegranskat)abstract
    • We use femtosecond time-resolved hard x-ray scattering to detect coherent acoustic phonons generated during ultrafast laser excitation of ferromagnetic bcc Fe films grown on MgO(001). We observe the coherent longitudinal-acoustic phonons as a function of wave vector through analysis of the temporal oscillations in the x-ray scattering signal. The width of the extracted strain wave front associated with this coherent motion is similar to 100 fs. An effective electronic Gruneisen parameter is extracted within a two-temperature model. However, ab initio calculations show that the phonons are nonthermal on the time scale of the experiment, which calls into question the validity of extracting physical constants by fitting such a two-temperature model.
  •  
3.
  • Bonetti, Stefano, et al. (författare)
  • THz-Driven Ultrafast Spin-Lattice Scattering in Amorphous Metallic Ferromagnets
  • 2016
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 117:8
  • Tidskriftsartikel (refereegranskat)abstract
    • We use single-cycle THz fields and the femtosecond magneto-optical Kerr effect to, respectively, excite and probe the magnetization dynamics in two thin-film ferromagnets with different lattice structures: crystalline Fe and amorphous CoFeB. We observe Landau-Lifshitz-torque magnetization dynamics of comparable magnitude in both systems, but only the amorphous sample shows ultrafast demagnetization caused by the spin-lattice depolarization of the THz-induced ultrafast spin current. Quantitative modeling shows that such spin-lattice scattering events occur on similar time scales than the conventional spin conserving electronic scattering (similar to 30 fs). This is significantly faster than optical laser-induced demagnetization. THz conductivity measurements point towards the influence of lattice disorder in amorphous CoFeB as the driving force for enhanced spin-lattice scattering.
  •  
4.
  • Gray, A. X., et al. (författare)
  • Ultrafast terahertz field control of electronic and structural interactions in vanadium dioxide
  • 2018
  • Ingår i: Physical Review B. - : AMER PHYSICAL SOC. - 2469-9950 .- 2469-9969. ; 98:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Vanadium dioxide (VO2), an archetypal correlated-electron material, undergoes an insulator-metal transition near room temperature that exhibits electron-correlation-driven and structurally driven physics. Using ultrafast temperature- and fluence-dependent optical spectroscopy and x-ray scattering, we show that multiple interrelated electronic and structural processes in the nonequilibrium dynamics in VO2 can be disentangled in the time domain. Specifically, following intense subpicosecond terahertz (THz) electric-field excitation, a partial collapse of the insulating gap occurs within the first picosecond. At temperatures sufficiently close to the transition temperature and for THz peak fields above a threshold of approximately 1 MV/cm, this electronic reconfiguration initiates a change in lattice symmetry taking place on a slower timescale. We identify the kinetic energy increase of electrons tunneling in the strong electric field as the driving force, illustrating a promising method to control electronic and structural interactions in correlated materials on an ultrafast timescale.
  •  
5.
  • Grånäs, Oscar, 1979-, et al. (författare)
  • Ultrafast modification of the electronic structure of a correlated insulator
  • 2022
  • Ingår i: Physical Review Research. - : American Physical Society. - 2643-1564. ; 4:3
  • Tidskriftsartikel (refereegranskat)abstract
    • A nontrivial balance between Coulomb repulsion and kinematic effects determines the electronic structure of correlated electron materials. The use of electromagnetic fields strong enough to rival these native microscopic interactions allows us to study the electronic response as well as the time scales and energies involved in using quantum effects for possible applications. We use element-specific transient x-ray absorption spectroscopy and high-harmonic generation to measure the response to ultrashort off-resonant optical fields in the prototypical correlated electron insulator NiO. Surprisingly, fields of up to 0.22 V/angstrom lead to no detectable changes in the correlated Ni 3d orbitals contrary to previous predictions. A transient directional charge transfer is uncovered, a behavior that is captured by first-principles theory. Our results highlight the importance of retardation effects in electronic screening and pinpoints a key challenge in functionalizing correlated materials for ultrafast device operation.
  •  
6.
  • Engel, Robin Y., et al. (författare)
  • Parallel Broadband Femtosecond Reflection Spectroscopy at a Soft X-Ray Free-Electron Laser
  • 2020
  • Ingår i: Applied Sciences. - : MDPI. - 2076-3417. ; 10:19
  • Tidskriftsartikel (refereegranskat)abstract
    • Featured Application Exploiting the full flux and temporal resolution of SASE-FELs for highly sensitive X-ray absorption measurements. X-ray absorption spectroscopy (XAS) and the directly linked X-ray reflectivity near absorption edges yield a wealth of specific information on the electronic structure around the resonantly addressed element. Observing the dynamic response of complex materials to optical excitations in pump-probe experiments requires high sensitivity to small changes in the spectra which in turn necessitates the brilliance of free electron laser (FEL) pulses. However, due to the fluctuating spectral content of pulses generated by self-amplified spontaneous emission (SASE), FEL experiments often struggle to reach the full sensitivity and time-resolution that FELs can in principle enable. Here, we implement a setup which solves two common challenges in this type of spectroscopy using FELs: First, we achieve a high spectral resolution by using a spectrometer downstream of the sample instead of a monochromator upstream of the sample. Thus, the full FEL bandwidth contributes to the measurement at the same time, and the FEL pulse duration is not elongated by a monochromator. Second, the FEL beam is divided into identical copies by a transmission grating beam splitter so that two spectra from separate spots on the sample (or from the sample and known reference) can be recorded in-parallel with the same spectrometer, enabling a spectrally resolved intensity normalization of pulse fluctuations in pump-probe scenarios. We analyze the capabilities of this setup around the oxygen K- and nickel L-edges recorded with third harmonic radiation of the free electron laser in Hamburg (FLASH), demonstrating the capability for pump-probe measurements with sensitivity to reflectivity changes on the per mill level.
  •  
7.
  • Liu, R. S., et al. (författare)
  • CoFe alloy as middle layer for strong spin dependent quantum well resonant tunneling in MgO double barrier magnetic tunnel junctions
  • 2013
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - 1098-0121 .- 1550-235X. ; 87:2, s. 024411-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on spin dependent quantum well (QW) resonances in the CoFe alloy middle layer of CoFe/MgO/CoFe/MgO/CoFeB double barrier magnetic tunnel junctions. The dI/dV spectra reveal clear resonant peaks for the parallel magnetization configurations, which can be related to the existence of QW resonances obtained from first-principles calculations. We observe that the differential tunneling magnetoresistance (TMR) exhibits an oscillatory behavior as a function of voltage with a sign change as well as a pronounced TMR enhancement at resonant voltages at room temperature. The observation of strong QW resonances indicates that the CoFe film possesses a long majority spin mean-free path, and the substitutional disorder does not cause a significant increase of scattering. Both points are confirmed by first-principles electronic structure calculation. DOI: 10.1103/PhysRevB.87.024411
  •  
8.
  • Polyakov, A., et al. (författare)
  • Instability of the topological surface state in Bi2Se3 upon deposition of gold
  • 2017
  • Ingår i: Physical Review B. - : American Physical Society. - 2469-9950 .- 2469-9969. ; 95:18
  • Tidskriftsartikel (refereegranskat)abstract
    • Momentum-resolved photoemission spectroscopy indicates the instability of the Dirac surface state upon deposition of gold on the (0001) surface of the topological insulator Bi2Se3. Based on the structure model derived from extended x-ray absorption fine structure experiments showing that gold atoms substitute bismuth atoms, first-principles calculations provide evidence that a gap appears due to hybridization of the surface state with gold d states near the Fermi level. Our findings provide insights into the mechanisms affecting the stability of the surface state.
  •  
9.
  • Polyakov, A., et al. (författare)
  • Reply to Comment on 'Instability of the topological surface state in Bi2Se3 upon deposition of gold'
  • 2018
  • Ingår i: Physical Review B. - : American Physical Society. - 2469-9950 .- 2469-9969. ; 98:13
  • Tidskriftsartikel (refereegranskat)abstract
    • In the Comment on our publication [Phys. Rev. B 95, 180202(R) (2017)], R. A. Gordon claims that our main conclusion is not valid, namely that gold atoms deposited in situ on the (0001) surface of single-crystalline Bi2Se3 reside in substitutional sites, i.e., replacing bismuth atoms within the topmost quintuple layer (QL). Based on x-ray absorption near-edge (XANES) spectra and a re-evaluation of extended x-ray absorption fine structure (EXAFS) data above the Au L-III edge, R. A. Gordon concludes that Au resides in a twofold environment as a result of an interface reaction leading to an Au2S-type local structure, in which gold adopts an Au(I) state and is linearly coordinated by selenium atoms. In this Reply, we will confirm the results published in the original paper and their interpretation that Au atoms reside in the substitutional site.
  •  
10.
  • Hudl, Matthias, et al. (författare)
  • Nonlinear Magnetization Dynamics Driven by Strong Terahertz Fields
  • 2019
  • Ingår i: Physical Review Letters. - : AMER PHYSICAL SOC. - 0031-9007 .- 1079-7114. ; 123:19
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a comprehensive experimental and numerical study of magnetization dynamics in a thin metallic film triggered by single-cycle terahertz pulses of ∼20  MV/m electric field amplitude and ∼1  ps duration. The experimental dynamics is probed using the femtosecond magneto-optical Kerr effect, and it is reproduced numerically using macrospin simulations. The magnetization dynamics can be decomposed in three distinct processes: a coherent precession of the magnetization around the terahertz magnetic field, an ultrafast demagnetization that suddenly changes the anisotropy of the film, and a uniform precession around the equilibrium effective field that is relaxed on the nanosecond time scale, consistent with a Gilbert damping process. Macrospin simulations quantitatively reproduce the observed dynamics, and allow us to predict that novel nonlinear magnetization dynamics regimes can be attained with existing tabletop terahertz sources.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy